Giải Toán 10 Cánh diều Bài 6: Ba đường conic
Bài 11 trang 102 Toán lớp 10 Tập 2: Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.
Lời giải:
Phương trình chính tắc của parabol có dạng y2 = 2px (với p > 0).
Vì AB = 40 và Ox là đường trung trực của đoạn AB nên khoảng cách từ điểm A đến trục Ox là .
Chiều sâu h bằng khoảng cách từ O đến AB và cũng chính bằng khoảng cách từ điểm A đến trục Oy và bằng 30.
Do đó, parabol đi qua điểm A có hoành độ là 30 (khoảng cách từ A đến trục Oy) và tung độ là 20 (khoảng cách từ A đến trục Ox) hay A(30; 20).
Thay tọa độ điểm A vào phương trình chính tắc của parabol, ta được:
202 = 2p . 30 ⇔ 60p = 400 ⇔ p = (thỏa mãn p > 0).
Lời giải Toán 10 Bài 6: Ba đường conic hay, chi tiết khác: