Giải Toán 11 Bài 3: Hàm số lượng giác và đồ thị - Cánh diều
Bài 4 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, hãy cho biết:
a) Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị sao cho sinα = m;
b) Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị α ∈ [0; π] sao cho cosα = m;
c) Với mỗi m ∈ ℝ, có bao nhiêu giá trị sao cho tanα = m;
d) Với mỗi m ∈ ℝ, có bao nhiêu giá trị α ∈ (0; π) sao cho cotα = m.
Lời giải:
a) Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = sinx trên :
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ [‒1;1] sẽ có 1 giá trị sao cho sinα = m.
b) Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = cosx trên [0; π]:
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy m ∈ [‒1;1] sẽ có 1 giá trị α ∈ [0; π] sao cho cosα = m.
c) Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = tanx trên :
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị sao cho tanα = m.
d) Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = cotx trên (0; π):
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị α ∈ (0; π) sao cho cotα = m.
Lời giải bài tập Toán 11 Bài 3: Hàm số lượng giác và đồ thị hay, chi tiết khác: