Giải Toán 11 Bài 3: Hàm số liên tục - Chân trời sáng tạo
Hoạt động khám phá 3 trang 82 Toán 11 Tập 1: Cho hai hàm số y = f(x) = và y = g(x) = .
a) Tìm tập xác định của mỗi hàm số đã cho.
b) Mỗi hàm số liên tục trên những khoảng nào? Giải thích.
Lời giải:
a) +) Xét hàm số: y = f(x) =
Điều kiện xác định của hàm số là x ≠ 1.
Vậy tập xác định của hàm số là: D = ℝ \ {1}.
+) Xét hàm số: y = g(x) =
Điều kiện xác định của hàm số là: 4 – x ≥ 0 ⇔ x ≤ 4.
Vậy tập xác định của hàm số là: D = (– ∞; 4].
b) +) Xét hàm số f(x):
Với x0 ∈ ( – ∞; 1) thì .
Suy ra hàm số f(x) liên tục trên (– ∞; 1).
Với x0 ∈ ( 1; + ∞) thì .
Suy ra hàm số f(x) liên tục trên (1; + ∞).
+) Xét hàm số g(x):
Với x0 ∈ (– ∞; 4) thì .
Tại x0 = 4 thì .
Vậy hàm số liên tục trên (– ∞; 4].
Lời giải bài tập Toán 11 Bài 3: Hàm số liên tục hay, chi tiết khác: