Giải Toán 11 | No tags
Câu hỏi khởi động trang 59 Toán 11 Tập 1: Zénon (Zê – nông, 496 – 429 trước Công Nguyên) là một triết gia Hy Lạp ở thành phố Edée đã phát biểu nghịch lí như sau: Achilles (A – sin) là một lực sĩ trong thần thoại Hy Lạp, người được mệnh danh là “có đôi chân chạy nhanh như gió” đuổi theo một con rùa trên một đường thẳng. Nếu lúc xuất phát, rùa ở điểm A1 cách Achilles một khoảng bằng a khác 0. Khi Achilles chạy đến vị trí của rùa xuất phát thì rùa chạy về phía trước một khoảng (như Hình 1). Quá trình này tiếp tục vô hạn. Vì thế, Achilles không bao giờ đuổi kịp rùa.
Trên thực tế, Achilles không đuổi kịp rùa là vô lí. Kiến thức toán học nào có thể giải thích được nghịch lí Zénon nói trên là không đúng?
Lời giải:
Giới hạn hữu hạn của hàm số có thể giải thích được nghịch lí Zénon nói trên là không đúng. Trong bài học ngày hôm nay chúng ta sẽ tìm hiểu về điều đó.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Hoạt động 1 trang 59 Toán 11 Tập 1: Hình 2 biểu diễn các số hạng của dãy số (un), với un = trên hệ trục tọa độ.
a) Nhận xét về sự thay đổi các giá trị un khi n ngày càng lớn.
b) Hoàn thành bảng và trả lời câu hỏi sau:
Kể từ số hạng un nào của dãy số thì khoảng cách từ un đến 0 nhỏ hơn 0,001? 0,0001?
Lời giải:
a) Khi n ngày càng lớn thì giá trị của un càng giảm dần về 0.
b) Ta có bảng:
n |
1 000 |
1 001 |
... |
10 000 |
10 001 |
... |
|un – 0| |
0,001 |
0,00099... |
... |
0,0001 |
0,000099... |
... |
Kể từ số hạng u1001 trở đi thì khoảng cách từ un đến 0 nhỏ hơn 0,001.
Kể từ số hạng u10 001 trở đi thì khoảng cách từ un đến 0 nhỏ hơn 0,0001.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Luyện tập 1 trang 60 Toán 11 Tập 1: Chứng minh rằng:
a) lim 0 = 0;
b) lim=0.
Lời giải:
a) Ta có: un = 0 với mọi n ∈ ℕ*
Với mọi ε > 0 bé tùy ý, ta có:
|un – 0| < ε với mọi n ∈ ℕ*
Vậy lim 0 = 0.
b) Ta có: un = với mọi n ∈ ℕ*
Với mọi ε > 0 bé tùy ý, ta có:
|un – 0| < ε ⇔ .
Chọn N ≥ thì với mọi n >N ta có:
Vì vậy lim=0.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Hoạt động 2 trang 60 Toán 11 Tập 1: Cho dãy số (un), với un = 2 + . Tính .
Lời giải:
Ta có: un – 2 = 2 + – 2 =
Với mọi ε > 0 bé tùy ý, ta có:
|un – 0| < ε ⇔ .
Chọn N ≥ thì với mọi n > N ta có:
Vì vậy lim(un-2) = 0.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Luyện tập 2 trang 61 Toán 11 Tập 1: Chứng minh rằng: lim=-4.
Lời giải:
Đặt un = , suy ra un – 4 =
Do đó lim(un-(-4)) = lim=0.
limun = -4.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Luyện tập 3 trang 62 Toán 11 Tập 1: Chứng minh rằng: lim = 0.
Lời giải:
Ta có < 1do đó lim = 0.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Hoạt động 3 trang 62 Toán 11 Tập 1: Cho hai dãy số (un), (vn) với un = 8+; vn = 4-.
a) Tính limun, limvn.
b) Tính lim(un + vn) và so sánh giá trị đó với tổng limun + limvn.
c) Tính lim(un.vn) và so sánh giá trị đó với tổng limun.limvn.
Lời giải:
a) Ta có: lim(un-8) = lim = 0.
Do đó limun = 8.
Ta có: lim(vn-4) = lim = 0.
Do đó limvn = 4.
b) limun + limvn = 8 + 4 = 12.
Ta có: un + vn = 8++4- = 12-
Ta lại có: lim(un+vn-12) = lim = 0.
Suy ra lim(un + vn) = 12.
Vì vậy lim(un + vn) = limun + limvn.
b) Ta có: un.vn = .
Khi đó lim(un.vn – 32) = lim=0.
Ta lại có: limun.limvn = 8.4 = 32.
Vì vậy limun.limvn = lim(unvn).
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Luyện tập 4 trang 62 Toán 11 Tập 1: Tính các giới hạn sau:
a) lim;
b) lim.
Lời giải:
a) lim.
b) .
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Hoạt động 4 trang 63 Toán 11 Tập 1: Cho cấp số nhân (un), với u1 = 1 và công bội q=.
a) Hãy so sánh |q| với 1.
b) Tính Sn = u1 + u2 + ... + un. Từ đó, hãy tính limSn.
Lời giải:
a) Ta có: |q| = < 1.
b) Ta có: (un) là cấp số nhân lùi vô hạn có tổng n số hạng đầu tiên là:
.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Luyện tập 5 trang 63 Toán 11 Tập 1: Tính tổng M = 1-
Lời giải:
Ta có dãy số 1; ; ; ...; ; ... là một cấp số nhân lùi vô hạn với số hạng đầu u1 = 1 và công bội q = thỏa mãn |q| < 1.
Do đó ta có: .
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Luyện tập 6 trang 63 Toán 11 Tập 1: Giải thích vì sao nghịch lí Zénon trong phần mở đầu là không đúng.
Lời giải:
Giả sử vận tốc của Asin gấp đôi vận tốc của chú rùa và khoảng cách lúc đầu là a.
Khi Asin chạy được a thì chú rùa chạy được .
Khi Asin chạy tiếp được thì chú rùa chạy được .
Do đó tổng quãng đường Asin phải chạy để đuổi kịp chú rùa là:
Theo lập luận của Asin tổng này là tổng vô hạn nên không bao giờ Asin đuổi kịp chú rùa.
Tuy nhiên các số hạng của tổng này lập thành một cấp số nhân với số hạng đầu u1 = a và công bội q = < 1.
Nên ta có tổng của cấp số nhân lùi vô hạn bằng:
.
Vì vậy tổng này là hữu hạn do đó Asin hoàn toàn có thể chạy để đuổi kịp rùa.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Hoạt động 5 trang 63 Toán 11 Tập 1: Quan sát dãy số (un) với un = n2 và cho biết giá trị của nn có thể lớn hơn một số dương bất kì được hay không kể từ một số hạng nào đó trở đi.
Lời giải:
Ta có bảng giá trị sau:
n |
1 |
2 |
3 |
... |
100 |
... |
1001 |
un |
1 |
4 |
9 |
... |
10 000 |
... |
1 002 001 |
Từ đó ta có các nhận xét sau:
+) Kể từ số hạng thứ 2 trở đi thì un > 1 .
+) Kể từ số hạng thứ 101 trở đi thì un > 10 000.
...
Vậy ta thấy un có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Luyện tập 7 trang 64 Toán 11 Tập 1: Tính lim(– n3).
Lời giải:
Xét dãy số (un) = n3.
Với M là số dương bất kì, ta thấy un = n3 > m ⇔ n > .
Suy ra với các số tự nhiên n > thì un > M. Do đó limn3 = +∞.
Vậy limn3 = – ∞.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Luyện tập 8 trang 64 Toán 11 Tập 1: Chứng tỏ rằng lim=0.
Lời giải:
Ta có:
Đặt un = n – 1 và , khi đó limun = +∞ và limvn=lim=0.
Vậy lim=limun.limvn=0.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Bài 1 trang 64 Toán 11 Tập 1: Cho hai dãy số (un), (vn) với un = 3 + , vn = 5 –. Tính các giới hạn sau:
a) limun, limvn;
b) lim(un + vn), lim(un – vn), lim(un.vn), lim.
Lời giải:
a) Ta có:
limun = lim(3 + ) = lim3 + lim= 3 + 0 = 3.
limvn = lim(5 – ) = lim5 – lim= 5 – 0 = 5.
b) lim(un + vn) = limun + limvn = 3 + 5 = 8.
lim(un – vn) = limun – limvn = 3 – 5 = – 2.
lim(un.vn) = limun.limvn = 3.5 = 15.
lim= .
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Bài 2 trang 65 Toán 11 Tập 1: Tính các giới hạn sau:
a) lim;
b) lim;
c) lim;
d) lim;
e) lim;
g) lim.
Lời giải:
a) lim = lim.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Bài 3 trang 65 Toán 11 Tập 1:
a) Tính tổng của cấp số nhân lùi vô hạn (un), với u1=, q=-.
b) Biểu diễn số thập phân vô hạn tuần hoàn 1,(6) dưới dạng phân số.
Lời giải:
a) Tổng của cấp số nhân lùi vô hạn (un), với u1=, q=-là:
b) Ta có:
1,(6) = 1 + 0,(6) = 1 + 0,6 + 0,06 + 0,006 + ... + 0,000006 + ...
Dãy số 0,6; 0,006; 0,0006; ... lập thành một cấp số nhân có số hạng đầu u1 = 0,6 và công bội q = có |q| < 1 nên ta có:
0,6 + 0,06 + 0,006 + ... + 0,000006 + ... =.
Suy ra 1,(6) = 1 + =.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Bài 4 trang 65 Toán 11 Tập 1: Từ hình vuông có độ dài cạnh bằng 1, người ta nối các trung điểm của cạnh hình vuông để tạo ra hình vuông mới như Hình 3. Tiếp tục quá trình này đến vô hạn.
a) Tính diện tích Sn của hình vuông được tạo thành ở bước thứ n;
b) Tính tổng diện tích của tất cả các hình vuông được tạo thành.
Lời giải:
a) Gọi Sn là diện tích của hình vuông thứ n.
Ta có: S1 = 1; S2 = ; S3 = ; ...
Dãy (Sn) lập thành cấp số nhân có số hạng đầu S1 = 1 và công bội q = có công thức tổng quát là: Sn = .
b) Ta có: |q|=||<1nên dãy (Sn) trên lập thành một cấp số nhân lùi hạn nên ta có:
S = 1+.
Vậy tổng diện tích của các hình vuông là 2 (đvdt).
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Bài 5 trang 65 Toán 11 Tập 1: Có 1 kg chất phóng xạ độc hại. Biết rằng, cứ sau một khoảng thời gian T = 24 000 năm thì một nửa số chất phóng xạ này bị phân ra thành chất khác không độc hại đối với sức khỏe của con người (T được gọi là chu kì bán rã).
(Nguồn: Đại số và Giải tích 11, NXB GD Việt Nam, 2021).
Gọi un là khối lượng chất phóng xạ còn lại sau chu kì thứ n.
a) Tìm số hạng tổng quát un của dãy số (un).
b) Chứng minh rằng (un) có giới hạn là 0.
c) Từ kết quả câu b), chứng tỏ rằng sau một số năm nào đó khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người, biết rằng chất phóng xạ này sẽ không độc hại nữa nếu khối lượng chất phóng xạ còn bé lại bé hơn 10– 6 g.
Lời giải:
a) Ta có: u1 = 1; u2 = ; u3 = ; ...
Suy ra (un) lập thành một cấp số nhân có số hạng đầu u1 = 1 và q = có số hạng tổng quát là: .
b) Ta có: lim=0.
c) Đổi
Để chất phóng xạ bé hơn 10-6 (g) thì n>31.
Vậy cần ít nhất 30 chu kì tương ứng với 720 000 năm khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người.
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Bài 6 trang 65 Toán 11 Tập 1: Gọi C là nửa đường tròn đường kính AB = 2R.
C1 là đường gồm hai nửa đường tròn đường kính .
C2 là đường gồm bốn nửa đường tròn đường kính , ...
Cn là đường gồm 2n nửa đường tròn đường kính ,...(Hình 4).
Gọi Pn là độ dài của Cn, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB.
a) Tính pn, Sn.
b) Tìm giới hạn của các dãy số (pn) và (Sn).
Lời giải:
a)
+) Ta có: p1 = ; p2 = ; p3 = ; ...
(pn) lập thành một cấp số nhân lùi vô hạn với số hạng đầu p1 = và công bội q = <1 có số hạng tổng quát pn = .
+) Ta có: C1 = ; C2 = ; C3 = ; ...
(Cn) lập thành một cấp số nhân lùi vô hạn với số hạng đầu C1 = và công bội q = <1có số hạng tổng quát Cn = .
Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:
Với giải sách bài tập Toán 11 Bài 1: Giới hạn của dãy số sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 1.
Với tóm tắt lý thuyết Toán 11 Bài 1: Giới hạn của dãy số sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 11.
1. Giới hạn hữu hạn của dãy số
1.1. Định nghĩa
– Dãy số (un) có giới hạn 0 khi n dần tới dương vô cực nếu |un| có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, kí hiệu .
– Dãy số (un) có giới hạn hữu hạn là a khi n dần tới dương vô cực nếu kí hiệu .
Nhận xét: Nếu un càng ngày càng gần tới 0 khi n ngày càng lớn thì lim un = 0.
Chú ý:
– Ngoài kí hiệu , ta cũng sử dụng kí hiệu sau:
lim un = 0 hay un → 0 khi n → +∞.
– Ngoài kí hiệu , ta cũng sử dụng kí hiệu sau:
lim un = a hay un → a khi n → +∞.
– Một dãy số có giới hạn thì giới hạn đó là duy nhất.
– Không phải dãy số nào cũng có giới hạn, chẳng hạn như dãy số (un) với un = (–1)n.
Ví dụ 1. Chứng minh .
Hướng dẫn giải
Vì nên .
2. Một số giới hạn cơ bản
Ta thừa nhận các giới hạn sau:
a) ; với k là số nguyên dương cho trước;
b) ; với c là hằng số, k là số nguyên dương cho trước;
c) Nếu |q| < 1 thì lim qn = 0;
d) Dãy số (un) với có giới hạn là một số vô tỉ và gọi giới hạn đó là e,
.
Một giá trị gần đúng của e là 2,718281828459045.
Ví dụ 2. Chứng minh .
Hướng dẫn giải
.
2. Định lí về giới hạn hữu hạn
a) Nếu lim un = a, lim vn = b thì:
lim (un + vn) = a + b;
lim (un – vn) = a – b;
lim (un . vn) = a . b;
.
b) Nếu un ≥ 0 với mọi n và lim un = a thì a ≥ 0 và .
Ví dụ 3. Tính giới hạn của dãy số:
.
Hướng dẫn giải
.
3. Tổng của cấp số nhân lùi vô hạn
Cấp số nhân vô hạn u1, u1q, …., u1qn – 1, … có công bội q thỏa mãn |q| < 1 được gọi là cấp số nhân lùi vô hạn.
Tổng của cấp số nhân lùi vô hạn đã cho là:
.
Ví dụ 4. Tính tổng
Hướng dẫn giải
Các số hạng của tổng trên lập thành một cấp số nhân (un), có , công bội .
Suy ra .
Vậy .
4. Giới hạn vô cực
Định nghĩa dãy số có giới hạn vô cực:
– Ta nói dãy số (un) có giới hạn + ∞ khi n dần tới dương vô cực, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.
Kí hiệu hay hay un → + ∞ khi n → + ∞.
– Ta nói dãy số (un) có giới hạn –∞ khi n dần tới dương vô cực, nếu .
Kí hiệu hay hay un → – ∞ khi n → + ∞.
Nhận xét:
• lim nk = + ∞ với k là số nguyên dương cho trước.
• lim qn = + ∞ với q > 1 là số thực cho trước.
• Nếu lim un = a và lim |vn| = + ∞ thì .
• Nếu lim un = a, a > 0 và lim vn = 0, vn > 0 với mọi n thì .
• lim un = +∞ ⇔ lim (–un) = –∞.
Ví dụ 5. Chứng tỏ rằng .
Hướng dẫn giải
Vì nên .
Bài 1. Tính các giới hạn sau:
a) ;
b) ;
c) ;
d) .
Hướng dẫn giải
a) Ta có .
Vậy .
b) Ta có .
Vậy .
.
Vậy .
d) Ta có:
Vậy .
Bài 2. Cho và . Tính các giới hạn:
lim (un + vn); lim(un – vn); lim(un.vn); .
Hướng dẫn giải
.
Khi đó:
• lim (un + vn) = lim un + lim vn = 2 + 1 = 3.
• lim (un – vn) = lim un – lim vn = 2 – 1 = 1.
• lim (un . vn) = lim un . lim vn = 2 . 1 = 2
• .
Bài 3. Tính tổng của cấp số nhân lùi vô hạn biết u1 = 1, công bội .
Hướng dẫn giải
Tổng của cấp số nhân lùi vô hạn với u1 = 1, công bội là:
.
Vậy S = 3.
Các bài học để học tốt Giới hạn của dãy số Toán lớp 11 hay khác:
Với 15 bài tập trắc nghiệm Giới hạn của dãy số Toán lớp 11 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Cánh diều sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 11.
Nội dung đang được cập nhật ...
Xem thêm bài tập trắc nghiệm Toán lớp 11 Cánh diều có đáp án hay khác: