Giải Toán 11 | No tags
Hoạt động khởi động trang 100 Toán 11 Tập 1: Mô tả vị trí giữa các cặp đường thẳng a và b, b và c, c và d có trong hình bên
Lời giải:
Sau khi học xong bài học này ta có thể trả lời được câu hỏi trên là:
+) Đường thẳng a và b là hai đường thẳng chéo nhau.
+) Đường thẳng b và c là hai đường thẳng song song.
+) Đường thẳng c và d là hai đường thẳng đồng phẳng.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Hoạt động khám phá 1 trang 100 Toán 11 Tập 1: a) Nếu các trường hợp có thể xảy ra đối với hai đường thẳng a, b cùng nằm trong một mặt phẳng.
b) Cho tứ diện ABCD. Hai đường thẳng AB và CD có cùng nằm trong bất kì mặt phẳng nào không?
Lời giải:
a) Các trường hợp có thể xảy ra đối với hai đường thẳng a và b cùng nằm trong một mặt phẳng là:
+) Hình 1a): Hai đường thẳng a và b trùng nhau.
+) Hình 1b): Hai đường thẳng a và b cắt nhau tại một điểm M.
+) Hình 1c): Hai đường thẳng a và b song song.
b) Hai đường thẳng AB và CD không cùng nằm trong một mặt phẳng nào cả.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Thực hành 1 trang 101 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Xét vị trí tương đối của các cặp đường thẳng sau đây:
a) AB và CD;
b) SA và SC;
c) SA và BC.
Lời giải:
a) Trong mặt phẳng (ABCD) có nên AB // CD (vì ABCD là hình bình hành).
b) Trong mặt phẳng (SAC) có: SA cắt SC tại S.
c) Giả sử SA và BC cùng nằm trong mặt phẳng (P).
Suy ra (P) chưa bốn đỉnh của tứ diện SABC. Điều này là vô lí.
Vậy SA và BC không nằm trong bất kì mặt phẳng nào, suy ra SA và BC chéo nhau.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Vận dụng 1 trang 102 Toán 11 Tập 1: Hãy chỉ ra các ví dụ về hai đường thẳng song song, cắt nhau và chéo nhau trong hình cầu sắt ở Hình 6.
Lời giải:
+) Hai đường thẳng a và b nằm trong mặt phẳng phía trên của cầu sắt và song song với nhau.
+) Hai đường thẳng c và d nằm trong mặt phẳng phía trên của cầu sắt và cắt nhau tại điểm A.
+) Hai đường thẳng e và f không cùng nằm trong một mặt phẳng nên e và f là hai đường thẳng chéo nhau.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Hoạt động khám phá 2 trang 102 Toán 11 Tập 1: a) Trong không gian, cho điểm M ở ngoài đường thẳng d. Đặt (P) = mp(M, d). Trong (P), qua M vẽ đường thẳng d’ song song với d, đặt (Q) = mp(d, d’). Có thể khẳng định hai mặt phẳng (P) và (Q) trùng nhau không?
b) Cho ba mặt phẳng (P), (Q), (R) cắt nhau theo ba giao tuyến a, b, c phân biệt với a = (P) ∩ (R); b = (Q) ∩ (R); c = (P) ∩ (Q) (Hình 8).
Nếu a và b có điểm chung M thì điểm M có thuộc c không?
Lời giải:
a) Ta có:
(P) = mp(M, d) nên (P) xác định duy nhất.
(Q) = mp(d, d’), mà M ∈ d’ nên (Q) = mp(M, d). Do đó (P) và (Q) trùng nhau.
b) Ta có:
Mà c = (P) ∩ (Q) nên M ∈ c.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Thực hành 2 trang 103 Toán 11 Tập 1: Cho hình chóp S.ABCD. Vẽ hình thang ADMS có hai đáy là AD và MS. Gọi d là đường thẳng trong không gian đi qua S và song song với AD. Chứng minh đường thẳng d nằm trong mặt phẳng (SAD).
Lời giải:
Ta có ADMS là hình thang nên SM // AD
Do trong không gian chỉ có duy nhất một đường thẳng đi qua S và song song với AD nên SM phải trùng với d.
Mà SM ⊂ (SAD)
Do đó d ⊂ (SAD).
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Hoạt động khám phá 3 trang 104 Toán 11 Tập 1: Ta đã biết trong cùng một mặt phẳng, hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau (Hình 13a).
Trong không gian, cho ba đường thẳng a, b, c không đồng phẳng, a và b cùng song song với c. Gọi M là điểm thuộc a, d là giao tuyến của mp(a, c) và mp(M, b) (Hình 13 b). Do b // c nên ta có d//b và d//c. Giải thích tại sao d phải trùng với a. Từ đó, nêu kết luận về vị trí giữa a và b.
Lời giải:
Ta có: mp(a, c) = mp(M, c) và mp(a, b) = mp(m, b)
Mà d là giao tuyến của mp(a, c) và mp(M, b)
Suy ra M ∈ d
Ta lại có d//b và d//c
Do đó d phải trùng a.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Thực hành 3 trang 105 Toán 11 Tập 1: Cho tứ diện ABCD có I và J lần lượt là trung điểm của các cạnh BC và BD. Gọi (P) là mặt phẳng đi qua I, J và cắt hai cạnh AC và AD lần lượt tại M và N.
a) Chứng minh IJNM là một hình thang.
b) Tìm vị trí của điểm M để IJNM là hình bình hành.
Lời giải:
a) Ta có: .
Xét tứ giác IJNM có: MN // IJ nên IJNM là hình thang.
b) Để IJNM là hình bình hành thì MN = IJ
Ta có: IJ = CD (IJ là đường trung bình của tam giác BCD) nên MN = CD và MN // CD nên MN là đường trung bình của tam giác ACD. Khi đó M là trung điểm của AC.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Vận dụng 2 trang 105 Toán 11 Tập 1: Một chiếc lều (Hình 16a) được minh họa như Hình 16b.
a) Tìm ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến song song.
b) Tìm ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến đồng quy.
Lời giải:
a) Ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến song song là (P), (Q) và (R).
b) Ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến đồng quy là:
(P), (S) và (R) hoặc (Q), (S) và (R).
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Bài 1 trang 105 Toán 11 Tập 1: Cho hai đường thẳng song song a và b. Mệnh đề sau đây đúng hay sai?
a) Đường thẳng c cắt a thì cũng cắt b.
b) Đường thẳng c chéo với a thì cũng chéo với b.
Lời giải:
a) Mệnh đề: “Hai đường thẳng a và b song song, đường thẳng c cắt a thì c cũng cắt b” là một mệnh đề sai vì c và b cũng có thể chéo nhau (không đồng phẳng).
b) Mệnh đề: “Hai đường thẳng a và b song song, đường thẳng c chéo với a thì cũng chéo với b là một mệnh đề sai.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Bài 2 trang 106 Toán 11 Tập 1: Hình chóp S.ABC và điểm M thuộc miền trong tam giác ABC (Hình 17). Qua M, vẽ đường thẳng d song song với SA, cắt (SBC). Trên hình vẽ, hãy chỉ rõ vị trí của điểm N và xác định giao tuyến của hai mặt phẳng (SAC) và (CMN).
Lời giải:
+) Trong mặt phẳng (ABC) kéo dài AM cắt cạnh BC tại I.
Ta có: mp(d, SA) = mp(SAI)
Trong mặt phẳng (SAI) gọi N là giao điểm của SI và d mà SI ⊂ (SBC). Do đó giao điểm của đường thẳng d và (SBC) là N.
Gọi d’ là giao tuyến của hai mặt phẳng (SAC) và (CMN).
Ta có:
Mà
Do đó C ∈ d’.
Vậy giao tuyến của hai mặt phẳng (SAC) và (CMN) là đường thẳng d’ đi qua C và song song với SA.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Bài 3 trang 106 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.
a) Tìm giao tuyến của hai mặt phẳng (SCD) và (SAB).
b) Lấy một điểm M trên đoạn SA (M khác S và A), mặt phẳng (BCM) cắt SD tại N. Tứ giác CBMN là hình gì?
Lời giải:
a) Ta có: CD // AB
CD ⊂ (SCD), AB ⊂ (SAB)
S ∈ (SAB) ∩ (SCD)
Do đó giao tuyến của hai mặt phẳng (SCD) và (SAB) là đường thẳng d đi qua S và song song với AB và CD.
b) Trong mặt phẳng (SAD), kẻ đường thằng qua M song song với AD cắt SD tại N.
Mà AD // BC nên MN // BC.
Do đó mp(M, BC) = mp(MN, BC).
Vậy N là giao điểm của SD với (MBC).
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Bài 4 trang 106 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm của SD. Hai mặt phẳng (IAC) và (SBC) cắt nhau theo giao tuyến Cx. Chứng minh rằng Cx // SB.
Lời giải:
Gọi O là giao điểm của AC và BD
Ta có: .
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Bài 5 trang 106 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành, AC và BD cắt nhau tại O. Gọi I là trung điểm của SO. Mặt phẳng ICD cắt SA, SB lần lượt tại M, N.
a) Hãy nói cách xác định hai điểm M và N. Cho AB = a. Tính MN theo a.
b) Trong mặt phẳng (CDMN), gọi K là giao điểm của CN và DM. Chứng minh SK // BC //AD.
Lời giải:
a) +) Trong mặt phẳng (SBD) có DI cắt SB tại N.
Mà DI ⊂ (ICD)
Do đó (ICD) cắt SB tại N.
+) Trong mặt phẳng (SAC) có CI cắt SA tại M.
Mà CI ⊂ (ICD)
Do đó (ICD) cắt SA tại M.
+)
b) Ta có:
(SAD) ∩ (ABCD) = AD
(SBC) ∩ (ABCD) = BC
(SAD) ∩ (SBC) = SK
Mà AD // BC
⇒ SK // AD // BC.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Bài 6 trang 106 Toán 11 Tập 1: Chỉ ra các đường thẳng song song trong mỗi hình sau. Tìm thêm một ví dụ khác về các đường thẳng song song trong thực tế.
Lời giải:
Hình 18a) các sợi dây cáp điện đồng phẳng và là các đường thẳng song song.
Hình 18b) các đường bờ ruộng là các đường thẳng song song.
Hình 18c) các đường rìa của mỗi bậc thang là các đường thẳng song song.
Hình 18d) các rìa phím của mỗi phím đàn là các đường thẳng song song.
Hình 18e) các rìa mỗi kệ của tủ là các đường thẳng song song.
Hình 18g) mỗi hàng gạch tạo ra một đường thẳng và các đường thẳng này song song với nhau.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song hay, chi tiết khác:
Với giải sách bài tập Toán 11 Bài 2: Hai đường thẳng song song sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 2.
Với tóm tắt lý thuyết Toán 11 Bài 2: Hai đường thẳng song song sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 11.
1. Vị trí tương đối của hai đường thẳng trong không gian
Cho hai đường thẳng a và b trong không gian. Khi đó có thể xảy ra một trong các trường hợp sau:
- Trường hợp 1. Có một mặt phẳng chứa a và b.
Khi đó, ta nói a và b đồng phẳng. Theo kết quả của hình học phẳng có 3 khả năng xảy ra:
• Nếu a và b có hai điểm chung thì ta nói a trùng b.
Kí hiệu: a b
• Nếu a và b có một điểm chung duy nhất M thì ta nói a và b cắt nhau tại M.
Kí hiệu: a b = M
• Nếu a và b không có điểm chung thì ta nói a và b song song với nhau.
Kí hiệu: a // b
- Trường hợp 2. Không có mặt phẳng nào chứa a và b.
Khi đó ta nói a và b chéo nhau hay a chéo với b.
Hai đường thẳng gọi là song song nếu chúng nằm trong cùng một mặt phẳng và không có điểm chung.
Chú ý:
• Hai đường thẳng gọi là chéo nhau nếu chúng không đồng phẳng.
• Cho hai đường thẳng song song a và b. Có duy nhất một mặt phẳng chứa hai đường thẳng đó.
Kí hiệu: mp(a, b)
Ví dụ: Cho tứ diện ABCD. Hãy chỉ ra các cặp đường thẳng chéo nhau.
Hướng dẫn giải
Đường thẳng AB và CD chéo nhau.
Đường thẳng AC và BD chéo nhau.
Đường thẳng AD và BC chéo nhau.
2. Tính chất cơ bản về hai đường thẳng song song
Định lí 1: Trong không gian, qua một điểm nằm ngoài một đường thẳng, có một và chỉ một đường thẳng song song với đường thẳng đó.
Ví dụ: Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật. Vẽ hình bình hành SMBA. Gọi d là đường thẳng đi qua S và song song với AB. Chứng minh M nằm trên đường thẳng d.
Hướng dẫn giải
Ta có: SMBA là hình bình hành, suy ra SM // AB.
Do trong không gian, chỉ có duy nhất một đường thẳng đi qua S và song song với AB, suy ra SM phải trùng d.
Vậy điểm S thuộc đường thẳng d.
Định lí 2: Nếu ba mặt phẳng đôi một cắt nhau tại ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song.
Ví dụ: Cho tứ diện ABCD. Tìm ba mặt phẳng có ba giao tuyến đồng quy.
Hướng dẫn giải
Ba mặt phẳng (ABC), (ACD) và (ADB) đôi một cắt nhau tại ba giao tuyến phân biệt AC, AD và AD.
Ba giao tuyến trên đồng quy tại điểm A.
Hệ quả: Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
Ví dụ: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. M là một điểm bất kì thuộc cạnh SA. Tìm giao tuyến của hai mặt phẳng (MCD) và (SAB)
Hướng dẫn giải
Ta có: M (SAB) (MCD)
AB (SAB) và CD (MCD)
Và AB // CD
Suy ra (SAB) (MCD) = Md, với Md // AB // CD.
Định lí 3: Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.
Chú ý: Khi hai đường thẳng phân biệt a, b cùng song song với đường thằng c thì ta có thể kí hiệu là a // b // c và gọi là ba đường thẳng song song.
Ví dụ: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng MN // AB, từ đó suy ra MN // CD.
Hướng dẫn giải
Xét tam giác SAB có M, N lần lượt là trung điểm của các cạnh SA, SB nên MN là đường trung bình của tam giác SAB.
Từ đó suy ra MN // AB.
Lại có AB // CD (vì ABCD là hình bình hành) nên từ đó ta có MN // CD (vì cùng song song với đường thẳng AB).
Bài 1. Cho tứ diện đều ABCD. Chứng minh rằng AB và CD là hai đường chéo nhau.
Hướng dẫn giải
Do ABCD là một tứ diện đều nên bốn điểm A, B, C, D không cùng thuộc mặt phẳng hay bốn điểm A, B, C, D không đồng phẳng.
Từ đó suy ra hai đường thẳng AB và CD không đồng phẳng.
Vậy AB và CD chéo nhau.
Bài 2. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. M là một điểm bất kì thuộc cạnh SA. Gọi a là giao tuyến của (SAB) và (SCD); b là giao tuyến của (SAB) và (MCD). Chứng minh: a // b.
Hướng dẫn giải
Ta có: S (SAB) (SCD)
AB (SAB) và CD (SCD)
Và AB // CD
Suy ra (SAB) (SCD) = a, với a // AB // CD (1)
Lại có: M (SAB) (MCD)
AB (SAB) và CD (MCD)
Và AB // CD
Suy ra (SAB) (MCD) = b, với b // AB // CD (2)
Từ (1) và (2) suy ra a // b (Cùng song song với AB và CD).
Bài 3. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD. Trên BD lấy điểm E bất kì. Qua E, kẻ đường thẳng song song với BC và cắt CD tại F. Tứ giác MNFE là hình gì?
Hướng dẫn giải
Xét tam giác ABD có M và N lần lượt là trung điểm của hai cạnh AB và AD
Suy ra MN là đường trung bình của tam giác ABD
Do đó MN // BD
Lại có theo bài ra: EF // BD
Vậy suy ra MN // EF (cùng song song với cạnh BD)
Khi đó tứ giác MNFE là hình thang.
Các bài học để học tốt Hai đường thẳng song song Toán lớp 11 hay khác: