Toán 11 Chân trời sáng tạo Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm

Giải Toán 11 | No tags

Mục lục

Với giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 Bài 2.

Giải Toán 11 Chân trời sáng tạo Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm

Giải Toán 11 trang 136

Hoạt động khởi động trang 136 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Hoạt động khởi động trang 136 Toán 11 Tập 1: Biểu đồ bên thống kê chiều cao (đơn vị: cm) của các vận động viên hai đội bóng rổ Sao La và Kim Ngưu. Hãy so sánh chiều cao của các vận động viên hai đội bóng theo số trung bình và trung vị.

Hoạt động khởi động trang 136 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Lời giải sẽ được thực hiện trong Thực hành 1 trang 137 SGK Toán 11.

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Hoạt động khám phá 1 trang 136 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Hoạt động khám phá 1 trang 136 Toán 11 Tập 1:

a) Sử dụng biểu đồ ở hoạt động khởi động, hoàn thiện bảng thống kê sau:

Hoạt động khám phá 1 trang 136 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Tìm các nhóm chứa giá trị trung vị chiều cao thành viên mỗi đội.

Lời giải:

Chiều cao

[170; 175)

[175; 180)

[180; 185)

[185; 190)

[190; 195)

Đội Sao La

2

4

5

5

4

Đội Kim Ngưu

2

3

4

10

1

b) +) Sau bài này ta sẽ tìm được cách tìm trung vị của mẫu số liệu trên như sau

- Trung vị của dãy số liệu chiều cao đội Sao La là:

Gọi x1; x2; x3; ...; x20 là chiều cao của 20 thành viên đội Sao La xếp theo thứ tự không giảm.

Số trung vị của mẫu số liệu trên là: 12(x10 + x11)

Từ bảng số liệu trên ta thấy x1; x2 ∈ [170; 175); x3; x4; x5; x6 ∈ [175; 180); x7; x8; x9; x10; x11 ∈ [180; 185).

Do đó 12(x10 + x11) sẽ thuộc nhóm [180; 185).

- Trung vị của dãy số liệu chiều cao đội Kim Ngưu là:

Gọi y1; y2; y3; ...; y20 là chiều cao của 20 thành viên đội Kim Ngưu xếp theo thứ tự không giảm.

Số trung vị của mẫu số liệu trên là: 12(y10 + y11)

Từ bảng số liệu trên ta thấy y1; y2 ∈ [170; 175); y3; y4; y5 ∈ [175; 180); y6; y7; x8; x9 ∈ [180; 185); x10; x11; ...; x19 ∈ [185; 190); x20 ∈ [190; 195).

Do đó 12(x10 + x11) sẽ thuộc nhóm [190; 195).

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Thực hành 1 trang 137 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Thực hành 1 trang 137 Toán 11 Tập 1: Hãy trả lời câu hỏi ở hoạt động khởi động.

Lời giải:

Ta có bảng tần số ghép nhóm sau:

Chiều cao

[170; 175)

[175; 180)

[180; 185)

[185; 190)

[190; 195)

Giá trị đại diện

172,5

177,5

182,5

187,5

192,5

Số vận động viên đội Sao La

2

4

5

5

4

Số vận động viên đội Kim Ngưu

2

3

4

10

1

+) Ước lượng chiều cao trung bình của các vận động viên đội Sao La là:

x1¯=172,5.2+177,5.4+182,5.5+187,5.5+192,5.420183,75 (cm).

Ước lượng chiều cao trung bình của các vận động viên đội Kim Ngưu là:

x2¯=172,5.2+177,5.3+182,5.4+187,5.10+192,5.120183,75 (cm).

Theo chiều cao trung bình thì cả hai đội có chiều cao như nhau.

+) Sau bài này ta sẽ tìm được cách tìm trung vị của mẫu số liệu trên như sau

- Trung vị của dãy số liệu chiều cao đội Sao La là:

Gọi x1; x2; x3; ...; x20 là chiều cao của 20 thành viên đội Sao La xếp theo thứ tự không giảm.

Số trung vị của mẫu số liệu trên là: 12(x10 + x11)

Từ bảng số liệu trên ta thấy x1; x2 ∈ [170; 175); x3; x4; x5; x6 ∈ [175; 180); x7; x8; x9; x10; x11 ∈ [180; 185).

Do đó 12(x10 + x11) sẽ thuộc nhóm [180; 185).

Khi đó số trung vị của số liệu đội Sao La là:

Me=180+202-(2+4)5(185-180)=184.

- Trung vị của dãy số liệu chiều cao đội Kim Ngưu là:

Gọi y1; y2; y3; ...; y20 là chiều cao của 20 thành viên đội Kim Ngưu xếp theo thứ tự không giảm.

Số trung vị của mẫu số liệu trên là: 12(y10 + y11)

Từ bảng số liệu trên ta thấy y1; y2 ∈ [170; 175); y3; y4; y5 ∈ [175; 180); y6; y7; x8; x9 ∈ [180; 185); x10; x11; ...; x19 ∈ [185; 190); x20 ∈ [190; 195).

Do đó 12(x10 + x11) sẽ thuộc nhóm [190; 195).

Khi đó số trung vị của số liệu đội Kim Ngưu là:

Me=190+202-(2+3+4)10(195-190)=190,5.

Dựa vào số trung vị ta thấy chiều cao của đội Kim Ngưu nhỉnh hơn chiều cao của đội Sao La.

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Vận dụng 1 trang 137 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Vận dụng 1 trang 137 Toán 11 Tập 1: Trong một hội thao, thời gian chạy 200 m của một nhóm các vận động viên được ghi lại trong bảng sau:

Vận dụng 1 trang 137 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Dựa vào bảng số liệu trên, ban tổ chứ muốn chọn ra khoảng 50% số vận động viên chạy nhanh nhất để tiếp tục thi vòng 2. Ban tổ chức nên chọn các vận động viên có thời gian chạy không quá bao nhiêu giây?

Lời giải:

Tổng số vận động viên n = 5 + 12 + 32 + 45 + 30 = 124.

Gọi x1; x2; ...; x124 lần lượt là thời gian chạy của 124 vận động viên tham gia hội thao được xếp theo thứ tự không giảm.

Ta có: x1; ...; x5 ∈ [21; 21,5), x6; ...; x17 ∈ [21,5; 22), x18; ...; x49 ∈ [22; 22,5), x50; ...; x94 ∈ [22,5; 23), x95; ...; x124 ∈ [23; 23,5).

Số trung vị của dãy số liệu là: 12(x62 + x63)

Mà x62; x63 ∈ [22,5; 23) do đó: Me = 22,5+1242-4945(23-22,5)22,6.

Vậy ban tổ chức nên chọn vận động viên có thời gian chạy không quá 22,6 giây.

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Hoạt động khám phá 2 trang 138 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Hoạt động khám phá 2 trang 138 Toán 11 Tập 1: Thời gian luyện tập trong một ngày (tính theo giờ) của một số vận động viên được ghi lại ở bảng sau:

Hoạt động khám phá 2 trang 138 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Huấn luyện viên muốn xác định nhóm gồm 25% các vận động viên có số giờ luyện tập cao nhất. Hỏi huấn luyện viên nên chọn các vận động viên có thời gian luyện tập từ bao nhiêu giờ trở lên vào nhóm này?

Lời giải:

Số vận động viên được khảo sát là: n = 3 + 8 + 12 + 12 + 4 = 39.

Gọi x1; x2; ...; x39 là thời gian luyện tập của 39 vận động viên được xếp theo thứ tự không giảm.

Ta có: x1; x2; x3 ∈ [0; 2), x4; ...; x11 ∈ [2; 4), x12; ...; x23 ∈ [4; 6), x24; ...; x35 ∈ [6; 8), x36; ...; x39 ∈ [8; 10).

Do đó đối với dãy số liệu x1; x2; ...; x39 thì:

- Tứ phân vị thứ nhất là x10 thuộc nhóm [2; 4);

- Tứ phân vị thứ hai là x20 thuộc nhóm [4; 6);

- Tứ phân vị thứ ba là x30 thuộc nhóm [6; 8).

Vậy huấn luyện viên nên chọn các vận động viên có thời gian luyện tập từ x30 (giờ) trở lên.

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Thực hành 2 trang 140 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Thực hành 2 trang 140 Toán 11 Tập 1: Một người thống kê lại thời gian thực hiện các cuộc gọi điện thoại của người đó trong một tuần ở bảng sau:

Thực hành 2 trang 140 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

b) Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

Lời giải:

Tổng số cuộc gọi điện thoại là: 8 + 10 + 7 + 5 + 2 + 1 = 33 (cuộc gọi).

Gọi x1; x2; ...; x33 là số thời gian thực hiện cuộc gọi điện thoại sắp xếp theo thứ tự không giảm.

Ta có: x1; ...; x8 ∈ [0; 60), x9; ...; x18 ∈ [60; 120), x19; ...; x25 ∈ [120; 180), x26; ...; x30 ∈ [180; 240), x31; x32 ∈ [240; 300), x33 ∈ [300; 360).

Khi đó:

- Tứ phân vị thứ hai của dãy số liệu x1; x2; x3; ...; x33 là x17. Vì x17 ∈ [60; 120) nên tứ phân vị thứ hai của mẫu số liệu là:

Q2 = 60+332-810.(120-60)=111.

- Tứ phân vị thứ nhất của dãy số liệu x1; x2; x3; ...; x33 là x8 và x9 . Vì x8 ∈ [0; 60) và x9 ∈ [60; 120) nên tứ phân vị thứ nhất của mẫu số liệu là: Q1 = 60.

- Tứ phân vị thứ nhất của dãy số liệu x1; x2; x3; ...; x33 là x25 và x26. Vì x25 ∈ [120; 180) và x26 ∈ [180; 200) nên tứ phân vị thứ ba của mẫu số liệu là: Q3 = 180.

Vậy tứ phân vị của mẫu số liệu là: Q1 = 60; Q2 = 111; Q3 = 180.

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Vận dụng 2 trang 140 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Vận dụng 2 trang 140 Toán 11 Tập 1: Một phòng khám thống kê số bệnh nhân đến khám bệnh mỗi ngày trong 4 tháng năm 2022 ở bảng sau:

Vận dụng 2 trang 140 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

b) Quản lí phòng khám cho rằng có khoảng 25% số ngày khám có nhiều hơn 35 bệnh nhân đến khám. Nhận định trên có hợp lí không?

Lời giải:

Hiệu chỉnh bảng số liệu ta được:

Số bệnh nhân

[0,5; 10,5)

[10,5; 20,5)

[20,5; 30,5)

[30,5; 40,5)

[40,5; 50,5)

Số ngày

7

8

7

6

2

Tổng số số ngày có bệnh nhân đến khám là: 7 + 8 + 7 + 6 + 2 = 30.

Gọi x1; x2; ...; x30 lần lượt là số bệnh nhân đến khám bệnh được sắp xếp theo thứ tự không giảm.

Ta có: x1; ...; x7 ∈ [0,5; 10,5), x8; ...; x15 ∈ [10,5; 20,5), x16; ...; x22 ∈ [20,5; 30,5), x23; ...; x28 ∈ [30,5; 40,5), x29; x30 ∈ [40,5; 50,5).

Khi đó:

- Tứ phân vị thứ nhất của mẫu số liệu là x8 ∈ [10,5; 20,5) nên

Q1 = 10,5+304-78.(20,5-10,5)11,1.

- Tứ phân vị thứ hai của mẫu số liệu là trung bình cộng của x15 và x16. Vì x15 ∈ [10,5; 20,5) và x16 ∈ [20,5; 25,5) nên ta có: Q2 = 20,5.

- Tứ phân vị thứ ba của mẫu số liệu là x24 ∈ [30,5; 40,5) nên

Q3 = 30,5+3.304-226.(40,5-30,5)31,3.

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Bài 1 trang 140 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Bài 1 trang 140 Toán 11 Tập 1: Lương tháng của một số nhân viên văn phòng được ghi lại như sau (đơn vị: triệu đồng):

Bài 1 trang 140 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Tìm tứ phân vị của dãy số liệu trên.

b) Tổng hợp lại dãy số liệu trên vào bảng tần số ghép nhóm theo mẫu sau:

Bài 1 trang 140 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

c) Hãy ước lượng tứ phân vị của số liệu ở bảng tần số ghép nhóm trên.

Lời giải:

Sắp xếp mẫu số liệu không giảm ta được:

6,5; 6,7; 6,7; 8,3; 8,4; 8,9; 9,2; 9,6; 9,8; 10,0; 10,0; 10,7; 10,9; 11,1; 11,2; 11,7; 11,9; 12,2; 12,5; 12,7; 13,1; 13,2; 13,6; 13,8.

Cỡ mẫu là n = 24 nên ta có:

Tứ phân vị thứ hai là trung bình cộng của giá trị thứ 12 và 13 ta được: Q2=10,7+10,92=10,8.

Tứ phân vị thứ nhất là trung bình cộng của giá trị thứ 6 và thứ 7 ta được:

Q1=8,9+9,22=9,05.

Tứ phân vị thứ ba là trung bình cộng của giá trị 18 và 19 ta được:

Q3=12,2+12,5212,35.

b) Ta có bảng tần số ghép nhóm:

Lương tháng

(triệu đồng)

[6; 8)

[8; 10)

[10; 12)

[12; 14)

Số nhân viên

3

6

8

7

c) Gọi x1; x2; ...; x24 là lương tháng của nhân viên một văn phòng theo thứ tự không giảm.

Ta có: x1; ...; x3 ∈ [6; 8), x4; ...; x9 ∈ [8; 10), x10; ...; x17 ∈ [10; 12), x18; ...; x24 ∈ [12; 14).

Khi đó:

- Tứ phân vị thứ hai của mẫu số liệu là trung bình cộng của x12 và x13. Vì x12; x13∈ [10; 12) nên Q2 = 10+242-98(12-10)=10,75.

- Tứ phân vị thứ nhất của mẫu số liệu là trung bình cộng của x6 và x7. Vì x6; x7 ∈ [8; 10) nên Q1=8+244-36(10-8)=9.

- Tứ phân vị thứ ba của mẫu số liệu là trung bình cộng của x18 và x19. Vì x18; x19 ∈ [12; 14) nên Q3=12+3.244-177(14-12)12,3.

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Bài 2 trang 141 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Bài 2 trang 141 Toán 11 Tập 1: Số điểm một cầu thủ bóng rổ ghi được trong 20 trận đấu được cho ở bảng sau:

Bài 2 trang 141 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Tìm tứ phân vị của dãy số liệu trên.

b) Tổng hợp lại dãy số liệu trên vào bảng tần số ghép nhóm theo mẫu sau:

Bài 2 trang 141 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

c) Hãy ước lượng tứ phân vị của mẫu số liệu từ bảng tần số ghép nhóm trên.

Lời giải:

a) Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

6; 8; 8; 10; 11; 11; 12; 13; 14; 14; 14; 15; 18; 18; 21; 22; 23; 24; 25; 25.

Tứ phân vị thứ hai của mẫu số liệu là trung bình cộng của giá trị thứ 10 và thứ 11 ta được: Q2=14+142=14.

Tứ phân vị thứ nhất là trung bình cộng của giá trị thứ 5 và thứ 6 ta được:

Q1=11+112=11.

Tứ phân vị thứ ba là trung bình cộng của giá trị 15 và 16 ta được:

Q3=21+222=21,5.

b) Ta có bảng tần số ghép nhóm theo mẫu sau:

Điểm số

[6; 10]

[11; 15]

[16; 20]

[21; 25]

Số trận

4

8

2

6

c) Ta có bảng hiểu chỉnh bảng trên như sau:

Điểm số

[5,5; 10,5)

[10,5; 15,5)

[15,5; 20,5)

[20,5; 25,5)

Số trận

4

8

2

6

Gọi x1; x2; ...; x20 là lương tháng của nhân viên một văn phòng theo thứ tự không giảm.

Ta có: x1; ...; x4 ∈ [5,5; 10,5), x5; ...; x12 ∈ [10,5; 15,5), x13; x14 ∈ [15,5; 20,5), x15; ...; x20 ∈ [20,5; 25,5).

Khi đó:

- Tứ phân vị thứ hai của mẫu số liệu là trung bình cộng của x10 và x11. Vì x10; x11 ∈ [10,5; 15,5) nên Q2 = 10,5+202-48(15,5-10,5)=14,25.

- Tứ phân vị thứ nhất của mẫu số liệu là trung bình cộng của x5 và x6. Vì x5; x6 ∈ [10,5; 15,5) nên Q1=10,5+204-48(15,5-10,5)=11,125.

- Tứ phân vị thứ ba của mẫu số liệu là trung bình cộng của x15 và x16. Vì x15; x16 ∈ [20,5; 25,5) nên Q3=20,5+3.204-146(25,5-20,5)21,3.

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Bài 3 trang 141 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Bài 3 trang 141 Toán 11 Tập 1: Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau:

Bài 3 trang 141 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Hãy ước lượng số trung bình, mốt và tứ phân vị của mẫu số liệu ghép nhóm trên.

Lời giải:

Ta có bảng giá trị đại diện:

Điện lượng

(nghìn mAh)

[0,9; 0,95)

[0,95; 1,0)

[1,0; 1,05)

[1,05; 1,1)

[1,1; 1,15)

Giá trị đại diện

0,925

0,975

1,025

1,075

1,125

Số viên pin

10

20

35

15

5

+) Ước lượng số trung bình của mẫu số liệu là:

x¯=0,925.10+0,975.20+1,025.35+1,075.15+1,125.5851,016.

+) Mốt của dãy số liệu thuộc vào [1,0; 1,05) nên ta có: M0=1,0+35-2035-20+35-15.(1,05-1,0)1,02.

+) Gọi x1; x2; ...; x85 là điện lượng của một số viên pin tiểu được sắp xếp theo thứ tự không giảm.

Ta có: x1; ...; x10 ∈ [0,9; 0,95), x11; ...; x30 ∈ [0,95; 1,0), x31; ...; x65 ∈ [1,0; 1,05), x66; ...; x80­ ∈ [1,05; 1,1), x81; ...; x85 ∈ [1,1; 1,15).

Khi đó, ta có:

- Tứ phân vị thứ hai của dãy số liệu là x43 ∈ [1,0; 1,05) nên Q2=1,0+852-3035.(1,05-1,0)1,02.

- Tứ phân vị thứ nhất của dãy số liệu là 12(x21 + x22) ∈ [0,95; 1,0) nên

Q1=0,95+854-1020.(1,0-0,95)0,98.

- Tứ phân vị thứ ba của dãy số liệu là 12(x63 + x64) ∈ [1,0; 1,05) nên

Q3=1,0+3.854-3035.(1,05-1,0)1,05.

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

Bài 4 trang 141 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo

Bài 4 trang 141 Toán 11 Tập 1: Cân nặng của một số lợn con mới sinh thuộc hai giống A và B được cho ở biểu đồ dưới đây (đơn vị : kg).

Bài 4 trang 141 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Hãy so sánh cân nặng của lợn con mới sinh giống A và giống B theo số trung bình và trung vị.

b) Hãy ướng lượng tứ phân vị thứ nhất và thứ ba của cân nặng lợn con mới sinh giống A và cân nặng lợn con mới sinh giống B.

Lời giải:

a) Ta có bảng tần số ghép lớp như sau:

Cân nặng (kg)

[1,0; 1,1)

[1,1; 1,2)

[1,2; 1,3)

[1,3; 1,4)

Giá trị đại diện

1,05

1,15

1,25

1,35

Số con lợn giống A

8

28

32

17

Số con lợn giống B

13

14

24

14

+) Ước lượng cân nặng trung bình của lợn con giống A là:

x1¯=1,05.8+1,15.28+1,25.32+1,35.178+28+32+171,22 (kg).

+) Ước lượng cân nặng trung bình của lợn con giống B là:

x2¯=1,05.13+1,15.14+1,25.24+1,35.1413+14+24+141,21 (kg).

Suy ra cân nặng trung bình của hai giống lợn con đều gần như nhau.

+) Tổng số lợn con giống A là 85 con.

Gọi x1; ...; x85 là cân nặng của một số lợn con mới sinh thuộc giống A theo thứ tự không giảm.

Ta có: x1; ...; x8 ∈ [1,0; 1,1), x9; ...; x36 ∈ [1,1; 1,2), x37; ...; x68 ∈ [1,2; 1,3), x69; ...; x85 ∈ [1,3; 1,4).

Tứ phân vị thứ hai của mẫu số liệu là giá trị x43 ∈ [1,2; 1,3) nên

Q2=1,2+852-3632.(1,3-1,2)1,22 (kg).

- Tứ phân vị thứ nhất của mẫu số liệu là 12(x21 + x22) và x21, x22 ∈ [1,1; 1,2) nên

Q1=1,1+854-828.(1,2-1,1)1,15 (kg).

- Tứ phân vị thứ ba của mẫu số liệu là 12(x63 + x64) và x63; x64 ∈ [1,2; 1,3) nên

Q3=1,2+3.854-3632.(1,3-1,2)1,29 (kg).

+) Tổng số lợn con giống B là 65 con.

Gọi y1; ...; y65 là cân nặng của một số lợn con mới sinh thuộc giống B theo thứ tự không giảm.

Ta có: y1; ...; y13 ∈ [1,0; 1,1), y14; ...; y27 ∈ [1,1; 1,2), y28; ...; y51 ∈ [1,2; 1,3), y52; ...; y65 ∈ [1,3; 1,4).

Tứ phân vị thứ hai của mẫu số liệu là giá trị y33 ∈ [1,2; 1,3) nên

Q2=1,2+652-2724.(1,3-1,2)1,22 (kg).

- Tứ phân vị thứ nhất của mẫu số liệu là 12(y16 + y17) và y16, y17 ∈ [1,1; 1,2) nên

Q1=1,1+654-1314.(1,2-1,1)1,12 (kg).

- Tứ phân vị thứ ba của mẫu số liệu là 12(y49 + x50) và y49; y50 ∈ [1,2; 1,3) nên

Q3=1,2+3.654-2724.(1,3-1,2)1,29 (kg).

Lời giải bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác:

SBT Toán 11 Chân trời sáng tạo Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm

Với giải sách bài tập Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 2.

Giải SBT Toán 11 Chân trời sáng tạo Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm

Trung vị và tứ phân vị của mẫu số liệu ghép nhóm (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Với tóm tắt lý thuyết Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 11.

Trung vị và tứ phân vị của mẫu số liệu ghép nhóm (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Lý thuyết Trung vị và tứ phân vị của mẫu số liệu ghép nhóm

1. Trung vị

1.1. Công thức xác định trung vị của mẫu số liệu ghép nhóm

• Gọi n là cỡ mẫu.

• Giả sử nhóm [um; um + 1) chứa trung vị.

• nm là tần số của nhóm chứa trung vị.

• C = n1 + n2 + ... + nm – 1.

Khi đó, ta có công thức xác định trung vị như sau:

Trung vị và tứ phân vị của mẫu số liệu ghép nhóm (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

1.2. Ý nghĩa của trung vị của mẫu số liệu ghép nhóm

- Trung vị của mẫu số liệu ghép nhóm là giá trị xấp xỉ cho mẫu số liệu gốc và có thể lấy làm giá trị đại diện cho mẫu số liệu.

Ví dụ: Kết quả khảo sát cân nặng của 25 quả bơ ở một lô hàng cho trong bảng sau:

Cân nặng (g)

[150; 155)

[155; 160)

[160; 165)

[165; 170)

[170; 175)

Số quả bơ

1

7

12

3

2

Tìm trung vị của mẫu số liệu trên.

Hướng dẫn giải

Gọi x1; x2;....; x25 là cân nặng của 25 quả bơ xếp theo thứ tự không giảm.

Do x1 ∈ [150; 155); x2,...., x8 ∈ [155; 160); x9,...., x20 ∈ [160; 165) nên trung vị của mẫu số liệu x1; x2;....; x25 là x13 ∈ [160; 165).

Ta xác định được n = 25, nm = 12, C = 1 + 7 = 8, um = 160, um + 1 = 165.

Vậy trung vị của mẫu số liệu ghép nhóm là:

Me=160+252812.(165 - 160) = 161,875.

2. Tứ phân vị

2.1. Công thức xác định tứ phân vị của mẫu số liệu ghép nhóm

- Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu là Q2, cũng chính là trung vị của mẫu số liệu ghép nhóm.

- Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu là Q1, ta thực hiện như sau:

• Giả sử nhóm [um; um + 1) chứa tứ phân vị thứ nhất.

• nm là tần số của nhóm chứa tứ phân vị thứ nhất.

• C = n1 + n2 + ... + nm – 1.

Khi đó,

Trung vị và tứ phân vị của mẫu số liệu ghép nhóm (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

- Tương tự, để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu là Q3, ta thực hiện như sau:

• Giả sử nhóm [uj; uj + 1) chứa tứ phân vị thứ ba.

• n j là tần số của nhóm chứa tứ phân vị thứ ba.

• C = n1 + n2 + ... + nj – 1.

Khi đó,

Trung vị và tứ phân vị của mẫu số liệu ghép nhóm (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Chú ý:

• Nếu tứ phân vị thứ k là (12xm+xm+1, trong đó xm và xm + 1 thuộc hai nhóm liên tiếp, ví dụ như xm ∈ [uj – 1; uj) và xm + 1 ∈ [uj; uj + 1) thì ta lấy Qk = uj.

2.2. Ý nghĩa của tứ phân vị của mẫu số liệu ghép nhóm

- Ba điểm tứ phân vị chia mẫu số liệu đã sắp xếp theo thứ tự không giảm thành bốn phần đều nhau. Giống như với trung vị, nói chung không thể xác định chính xác các điểm tứ phân vị của mẫu số liệu ghép nhóm.

- Bộ ba tứ phân vị của mẫu số liệu ghép nhóm là giá trị xấp xỉ cho tứ phân vị của mẫu số liệu gốc và được sử dụng làm giá trị đo xu thế trung tâm của mẫu số liệu.

- Tứ phân vị thứ nhất và thứ ba đo xu thế trung tâm của nửa dưới (các dữ liệu nhỏ hơn Q2) và nửa trên (các dữ liệu lớn hơn Q2) của mẫu số liệu.

Ví dụ: Một hãng xe ô tô thống kê lại số lần gặp sự cố về động cơ của 100 chiếc xe cùng loại sau 2 năm sử dụng đầu tiên ở bảng sau:

Số lần gặp sự cố

[1; 2]

[3; 4]

[5; 6]

[7; 8]

[9; 10]

Số xe

17

33

25

20

5

Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

Ta có: do số lần gặp sự cố là số nguyên nên ta hiệu chỉnh lại như sau:

Số lần gặp sự cố

[0,5; 2,5)

[2,5; 4,5)

[4,5; 6,5)

[6,5; 8,5)

[8,5; 10,5)

Số xe

17

33

25

20

5

Gọi x1; x2;....; x100 là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có x1,...., x17 ∈ [0,5; 2,5); x18,...., x50 ∈ [2,5; 4,5); x51,...., x75 ∈ [4,5; 6,5);

x76,..., x95 ∈ [6,5; 8,5); x96,...., x100 ∈ [8,5; 10,5).

Tứ phân vị thứ hai của dãy số liệu x1; x2;....; x100 12(x50+x51). Do x50 ∈ [4,5; 6,5) và  x51 ∈ [4,5; 6,5) nên tứ phân vị thứ hai của mẫu số liệu ghép nhóm là Q2=4,5.

Tứ phân vị thứ nhất của dãy số liệu x1; x2;....; x100 12(x25+x26). Do x25 và x26 thuộc nhóm [2,5; 4,5) nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là

Q1=2,5+1.10041733.(4,5 - 2,5) = 197662,98.

Tứ phân vị thứ ba của dãy số liệu x1; x2;....; x100 12(x75+x76). Do x75 ∈ [4,5; 6,5) và   x76 ∈ [6,5; 8,5) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q3=6,5.

Bài tập Trung vị và tứ phân vị của mẫu số liệu ghép nhóm

Bài 1. Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau:

Điện lượng

(nghìn mAh)

[0,9; 0,95)

[0,95; 1,0)

[1,0; 1,05)

[1,05; 1,1)

[1,1; 1,15)

Số viên pin

10

20

35

15

5

Hãy ước lượng số trung bình, mốt và tứ phân vị của mẫu số liệu ghép nhóm trên.

Hướng dẫn giải

Điện lượng

(nghìn mAh)

[0,9; 0,95)

[0,95; 1,0)

[1,0; 1,05)

[1,05; 1,1)

[1,1; 1,15)

Giá trị đại diện

0,925

0,975

1,025

1,075

1,125

Số viên pin

10

20

35

15

5

Số trung bình của dãy số liệu xấp xỉ bằng:

(0,925.10 + 0,975.20 + 1,025.35 + 1,075.15 + 1,125.5) : 85 = 1,016

Vậy nhóm chứa mốt của dãy số liệu là nhóm [1,0; 1,05).

Mốt của mẫu số liệu trên là:

Trung vị và tứ phân vị của mẫu số liệu ghép nhóm (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Gọi x1; x2; x3;....; x85 lần lượt là số viên pin theo thứ tự không giảm.

Do x1,...., x10 ∈ [0,9; 0,95); x11,...., x30 ∈ [0,95; 1,0); x31,...., x65 ∈ [1,0; 1,05);

x66,...., x80 ∈ [1,05; 1,1); x81,...., x85 ∈ [1,1; 1,15).

Tứ phân vị thứ hai của dãy số liệu là 12(x42+x43) thuộc nhóm [1,0; 1,05) nên tứ phân vị thứ hai của mẫu số liệu là Q2=1,0+8523035(1,05-1,0) = 1,02

Tứ phân vị thứ nhất của dãy số liệu là 12(x21+x22) thuộc nhóm [0,95; 1,0) nên tứ phân vị thứ nhất của mẫu số liệu là Q1=0,95+8541020(1,0-0,95) = 0,98

Tứ phân vị thứ ba của dãy số liệu là 12(x63+x64) thuộc nhóm [1,0; 1,05) nên tứ phân vị thứ ba của mẫu số liệu là Q3=1,0+3.8543035(1,05- 1,0) = 1,048.

Vậy trong mẫu số liệu trên, số trung bình là 1,016, mốt là 1,02, tứ phân vị thứ nhất, thứ hai và thứ ba lần lượt là 0,98; 1,02; 1,048.

Bài 2. Cân nặng của một số lợn con mới sinh thuộc hai giống A và B được cho ở biểu đồ dưới đây (đơn vị: kg).

Trung vị và tứ phân vị của mẫu số liệu ghép nhóm (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

a) Hãy so sánh cân nặng của lợn con mới sinh giống A và giống B theo số trung bình và trung vị.

b) Hãy ước lượng tứ phân vị thứ nhất và thứ ba của cân nặng lợn con mới sinh giống A và của cân nặng lợn con mới sinh giống B.

Hướng dẫn giải

Cân nặng của lợn con giống A và giống B được thống kê như sau:

Cân nặng (kg)

[1,0; 1,1)

[1,1; 1,2)

[1,2; 1,3)

[1,3; 1,4)

Giá trị đại diện

1,05

1,15

1,25

1,35

Số con giống A

8

28

32

17

Số con giống B

13

14

24

14

a) Số cân nặng trung bình của lợn con giống A là:

(1,05.8 + 1,15.28 + 1,25.32 + 1,35.17) : 85 = 1,22 (kg)

Số cân nặng trung bình của lợn con giống B là:

(1,05.13 + 1,15.14 + 1,25.24 + 1,35.14) : 65 = 1,21 (kg)

Vậy cân nặng trung bình của lợn con giống A lớn hơn lợn con giống B theo số trung bình.

Gọi x1; x2; x3;....; x85 lần lượt là số lợn con giống A theo thứ tự không giảm.

Do x1,...., x8 ∈ [1,0; 1,1); x9,...., x36 ∈ [1,1; 1,2); x37,...., x68 ∈ [1,2; 1,3);

x69,...., x85 ∈ [1,3; 1,4).

Trung vị của mẫu số liệu lợn con giống A thuộc nhóm [1,2; 1,3) là:

MA=1,2+8523632.(1,3 - 1,2) = 1,22

Gọi y1; y2; y3;....; y65 lần lượt là số lợn con giống B theo thứ tự không giảm.

Do y1,...., y13 ∈ [1,0; 1,1); y14,...., y27 ∈ [1,1; 1,2); y28,...., y51 ∈ [1,2; 1,3);

y52,...., y65 ∈ [1,3; 1,4).

Trung vị của mẫu số liệu lợn con giống B thuộc nhóm [1,2; 1,3) là:

MB=1,2+6522724.(1,3 - 1,2) =1,223

 Vậy cân nặng trung bình của lợn con giống A nhỏ hơn lợn con giống B theo trung vị.

b) Tứ phân vị thứ nhất của dãy số liệu giống A là12(x21+x22) thuộc nhóm [1,1; 1,2) nên tứ phân vị thứ nhất của mẫu số liệu là Q1A=1,1+854828(1,2 - 1,1) = 1,15

Tứ phân vị thứ ba của dãy số liệu giống A là 12(x63+x64) thuộc nhóm [1,2; 1,3) nên tứ phân vị thứ ba của mẫu số liệu là Q3A=1,2+3.8543632(1,3 - 1,2) = 1,29

Tứ phân vị thứ nhất của dãy số liệu giống B là 12(y16+y17) thuộc nhóm [1,1; 1,2) nên tứ phân vị thứ nhất của mẫu số liệu là Q1B=1,1+6541314(1,2 - 1,1) = 1,12

Tứ phân vị thứ ba của dãy số liệu giống B là 12(y48+y49) thuộc nhóm [1,2; 1,3) nên tứ phân vị thứ ba của mẫu số liệu là Q3B=1,2+3.6542724(1,3 - 1,2) = 1,29

Vậy tứ phân vị thứ nhất của lợn con giống A và giống B lần lượt là 1,15 và 1,12;

Tứ phân vị thứ ba của lợn con giống A và giống B lần lượt là 1,29 và 1,29.

Học tốt Trung vị và tứ phân vị của mẫu số liệu ghép nhóm

Các bài học để học tốt Trung vị và tứ phân vị của mẫu số liệu ghép nhóm Toán lớp 11 hay khác: