Toán 11 Chân trời sáng tạo Bài tập cuối chương 3 (trang 85, 86)

Giải Toán 11 | No tags

Mục lục

Với giải bài tập Toán 11 Bài tập cuối chương 3 trang 85, 86 sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 Bài tập cuối chương 3.

Giải Toán 11 Chân trời sáng tạo Bài tập cuối chương 3 (trang 85, 86)

Bài tập

Giải Toán 11 trang 85

Bài 1 trang 85 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 1 trang 85 Toán 11 Tập 1: limn+3n2 bằng:

A. 1;

B. 0;

C. 3;

D. 2.

Lời giải:

Đáp án đúng là B

Ta có: limn+3n2=lim1n+3n21=0.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 2 trang 85 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 2 trang 85 Toán 11 Tập 1: Tổng của cấp số nhân lùi vô hạn:

M=1+14+142+...+14n+... bằng:

A. 34;

B. 54;

C. 43;

D. 65.

Lời giải:

Đáp án đúng là C

Cấp số nhân lùi vô hạn đã cho có số hạng đầu u1 = 1 và công bội q = 14 có tổng bằng:

M=1+14+142+...+14n+...=1114=43.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 3 trang 85 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 3 trang 85 Toán 11 Tập 1: limx3x29x3 bằng

A. 0;

B. 6;

C. 3;

D. 1.

Lời giải:

Đáp án đúng là B

Ta có: limx3x29x3=limx3x+3x3x3=limx3x+3=6.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 4 trang 85 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 4 trang 85 Toán 11 Tập 1: Hàm số: f(x) = Bài 4 trang 85 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 liên tục tại x = 2 khi

A. m = 3;

B. m = 5;

C. m = – 3;

D. m = – 5.

Lời giải:

Đáp án đúng là D

Ta có: limx2+fx=limx2+x2+2x+m=m+8

limx2fx=limx23=3

Để hàm số liên tục tại x = 2 thì m + 8 = 3 ⇔ m = – 5.

Vậy với m = – 5 thì hàm số đã cho liên tục tại x = 2.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 5 trang 85 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 5 trang 85 Toán 11 Tập 1: limx+2x1x bằng

A. 2;

B. – 1;

C. 0;

D. 1.

Lời giải:

Đáp án đúng là A

Ta có: limx+2x1x=limx+21x1=2.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 6 trang 86 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 6 trang 86 Toán 11 Tập 1: Tìm các giới hạn sau:

a) lim3n1n;

b) limn2+2n;

c) lim23n+1;

d) lim(n+1)2n+2n2.

Lời giải:

a) lim3n1n=lim31n1=3.

b) limn2+2n=lim1+2n21=1.

c) lim23n+1=lim2n3+1n=0.

d) lim(n+1)2n+2n2=lim2n2+4n+2n2=lim2+4n+2n21=2.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 7 trang 86 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 7 trang 86 Toán 11 Tập 1: Cho tam giác đều có cạnh bằng a, gọi là tam giác H1. Nỗi các trung điểm của H1 để tạo thành tam giác H2. Tiếp theo, nối các trung điểm của H2 để tạo thành tam giác H3 (Hình 1). Cứ tiếp tục như vậy, nhận được dãy tam giác H1, H2, H3, ...

Tỉnh tổng chu vi và tổng diện tích của các tam giác của dãy.

Bài 7 trang 86 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Ta có:

Diện tích tam giác H1 = S và chu vi tam giác H1 = 3a;

Diện tích tam giác H2 = 14S và chu vi tam giác H2 = 123a;

Diện tích tam giác H2 = 142S và chu vi tam giác H3 = 1223a;

...

Diện tích tam giác Hn = 14n1S và chu vi tam giác H2 = 12n13a;

Khi đó:

Diện tích của dãy các tam giác H1; H2; H3; ...; H4 lập thành một cấp số nhân lùi vô hạn có số hạng đầu tiên u1 = S và công bội q = 14 có tổng bằng S+14S+142S+...+14n1S+...=S114=43S.

Diện tích của dãy các tam giác H1; H2; H3; ...; H4 lập thành một cấp số nhân lùi vô hạn có số hạng đầu tiên u1 = 3a và công bội q = 12 có tổng bằng

3a+12.3a+122.3a+123.3a+...+12n13a+...=3a112=6a.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 8 trang 86 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 8 trang 86 Toán 11 Tập 1: Tìm các giới hạn sau:

a) limx13x2x+2;

b) limx4x216x4;

c) limx23x+7x2.

Lời giải:

a) limx13x2x+2=6.

b) limx4x216x4=limx4x4x+4x4=limx4x+4=8.

c) limx23x+7x2=limx22x3+x+7x2=limx23x+7=6.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 9 trang 86 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 9 trang 86 Toán 11 Tập 1: Tìm các giới hạn sau:

a) limx+x+2x+1;

b) limxx2x2.

Lời giải:

a) limx+x+2x+1=limx+1+2x1+1x=1.

b) limxx2x2=limx1x2x21=0.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 10 trang 86 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 10 trang 86 Toán 11 Tập 1: Tìm các giới hạn sau:

a) limx4+1x4;

b) limx2+x2x.

Lời giải:

a) limx4+1x4=+.

b) limx2+x2x=limx2+x.limx2+12x=+.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 11 trang 86 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 11 trang 86 Toán 11 Tập 1: Xét tính liên tục của hàm số f(x) = Bài 11 trang 86 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11.

Lời giải:

+) Với x ∈ (0; + ∞) ta có f(x) = x+4 liên tục.

+) Với x ∈ (– ∞; 0) ta có f(x) = 2cosx liên tục.

+) Tại x = 0, ta có:

limx0+fx=limx0+x+4=2;

limx0fx=limx02cosx=2.

Suy ra limx0fx=limx0+fx=limx0fx=2=f0

Do đó hàm số liên tục tại x = 0.

Vậy hàm số liên tục trên ℝ.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 12 trang 86 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 12 trang 86 Toán 11 Tập 1: Cho hàm số f(x) = Bài 12 trang 86 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11. Tìm a để hàm số y = f(x) liên tục trên ℝ.

Lời giải:

+) Với mọi x ≠ 5 thì f(x) = x225x5 liên tục.

+) Tại x = 5, ta có:

limx5fx=limx5x225x5=limx5x5x+5x5=limx5x+5=10.

f(5) = a

Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 5 khi a = 10.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

Bài 13 trang 86 Toán 11 Tập 1 Chân trời sáng tạo

Giải Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 13 trang 86 Toán 11 Tập 1: Trong một tủ thí nghiệm, nhiệt độ trong tủ sấy được điều khiển tăng từ 10°C, mỗi phút tăng 2°C trong 60 phút, sau đó giảm mỗi phút 3°C trong 40 phút. Hàm số biểu thị nhiệt độ (tính theo ºC) trong tủ theo thời gian t (tính theo phút) có dạng

T(t) = Bài 13 trang 86 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (k là hằng số).

Biết rằng T(t) là hàm liên tục trên tập xác đinh. Tìm giá trị của k.

Lời giải:

+) Với 0 ≤ t < 60 thì T(t) = 10 + 2t là hàm số liên tục.

+) Với 60 < t ≤ 100 thì T(t) = k – 3t là hàm số liên tục.

+) Tại t = 60, ta có:

limt60Tt=limt6010+2t=130

limt60+Tt=limt60k3t=k180

Để hàm số liên tục trên tập xác định [0; 100] thì hàm số liên tục tại x = 60

⇔ k – 180 = 130

⇔ k = 240.

Lời giải bài tập Toán 11 Bài tập cuối chương 3 hay, chi tiết khác:

SBT Toán 11 Chân trời sáng tạo Bài tập cuối chương 3

Với giải sách bài tập Toán 11 Bài tập cuối chương 3 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài tập cuối chương 3.

Giải SBT Toán 11 Chân trời sáng tạo Bài tập cuối chương 3

A. TRẮC NGHIỆM

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Tổng hợp lý thuyết Toán 11 Chương 3: Giới hạn. Hàm số liên tục sách Chân trời sáng tạo hay nhất, chi tiết với bài tập có lời giải sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm Toán 11 Chương 3.

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Lý thuyết tổng hợp Toán 11 Chương 3

1. Giới hạn hữu hạn của dãy số

1.1. Giới hạn 0 của dãy số

Ta nói (un) có giới hạn 0 khi n dần tới dương vô cực, nếu |un| nhỏ hơn một số dương bé tùy ý cho trước, kể từ một số hạng nào đó trở đi.

Kí hiệu: limn+un=0  hay un0  khi n+

Một vài giới hạn đặc biệt:

lim1nk=0 , với k nguyên dương bất kì.

• lim qn = 0, với q là số thực thỏa mãn |q| < 1.

1.2. Giới hạn hữu hạn của dãy số

Ta nói dãy số có giới hạn hữu hạn là số a (hay un dần tới a) khi n dần tới dương vô cực, nếu lim (un – a) = 0.

Kí hiệu: limn+un=a  hay lim un = a khi n → +∞.

Chú ý: Nếu un = c (c là hằng số) thì limun=limc=c

2. Các phép toán về giới hạn hữu hạn của dãy số

Cho lim un = a, lim vn = b và c là hằng số. Khi đó:

• lim (un + vn) = a + b                        

• lim (un – vn) = a – b

• lim (c.un) = c . a                               

• lim (un.un) = a . b

•  limunvn=ab (b0 )                         

• Nếu un0,n*  thì a0  và limun=a

3. Tổng của cấp số nhân lùi vô hạn

Cấp số nhân vô hạn (un) có công bội q thõa mãn |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Cấp số nhân lùi vô hạn nàu có tổng là:

S=u1+u2+...+un+...=u11q.

4. Giới hạn vô cực

• Ta nói dãy số (un) có giới hạn là +∞ khi n → +∞, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Kí hiệu: lim un = + ∞ hay un → +∞ khi n → +∞.

• Dãy số (un) có giới hạn là −∞ khi n → +∞, nếu lim un = + ∞.

Kí hiệu: lim un = − ∞ hay un → −∞ khi n → +∞.

Chú ý:

• lim un = + ∞ ⇔ lim (−un) = − ∞;

• Nếu lim un = + ∞ hoặc lim un = − ∞ thì lim1un=0 ;

• Nếu lim un = 0 và un > 0 với mọi n thì lim1un=+ .

Nhận xét:

limnk=+ (k,k1);

limqn=+(q > 1).

5. Giới hạn hữu hạn của hàm số tại một điểm

Cho điểm x0 thuộc K và hàm số y = f(x) xác định trên K hoặc K \ {x0}.

Ta nói hàm số y = f(x) có giới hạn hữu hạn là số L khi x dần tới x0 nếu với dãy số (xn) bất kì, xn ∈ K \ {x0} và xn → x0, thì f(xn) → L.

Kí hiệu:  hay f(x) → L khi x → x0.

Nhận xét:

limxx0x=x0 ;

limxx0c=c  (c là hằng số).

6. Các phép toán về giới hạn hữu hạn của hàm số

a) Cho limxx0f(x) = L và  limxx0g(x) = M. Khi đó:

• limxx0[ f(x) + g(x)] = L + M

• limxx0[ f(x) - g(x)] = L - M

• limxx0[ f(x) . g(x)] = L . M

limxx0f(x)g(x)= LM (với M ≠ 0)

b) Nếu f(x) ≥ 0 và limxx0f(x) = L thì L ≥ 0 và limxx0f(x)=L

(Dấu của f (x) được xét trên khoảng tìm giới hạn, x ≠ x0).

Nhận xét:

limxx0xk=x0k , k là số nguyên dương;

limxx0[cf(x) = c limxx0 f(x)  ( c, nếu tồn tại limxx0f(x) ) .

3. Giới hạn một phía

Cho hàm số y = f(x) xác định trên khoảng (x0; b).

• Ta nói hàm số y = f(x) có giới hạn bên phải là +∞ khi x → x0 về bên phải nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, thì f(xn) → +∞.

Kí hiệu: limxx0+f(x) = +∞ hay f(x) → +∞ khi xx0+ .

• Ta nói hàm số y = f(x) có giới hạn bên phải là −∞ khi x → x0 về bên phải nếu với dãy số (xn) bất kì, x0 < xn < b và x → x0, thì f(xn) → −∞..

Kí hiệu: limxx0+f(x) = −∞  hay f(x) → -∞  khi xx0+ .

Chú ý:

a) Các giới hạn  limxx0-f(x) = +∞, limxx0- f(x) = -∞,  limx+f(x) = +∞, limx+f(x) = -∞, limxf(x) = +∞,limxf(x) = -∞ được định nghĩa tương tự như trên.

b) Ta có các giới hạn thường dùng sau:

limxa+1xa=+  và limxa1xa= (a) ;

limx+xk=+  với k là nguyên dương;

limxxk=+  nếu k là số nguyên dương chẵn;

limxxk=  nếu k là số nguyên dương lẻ.

c) Các phép toán trên giới hạn hàm số của Mục 2 chỉ áp dụng được khi tất cả các hàm số được xét có giới hạn hữu hạn. Với giới hạn vô cực, ta có một số quy tắc sau đây.

Nếu limxx0+f(x) = L0  và limxx0+g(x) = +∞ (hoặc limxx0+g(x) = -∞ )  thì limxx0+[(f(x) . g(x)]  được tính theo quy tắc cho bởi bảng sau:

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Các quy tắc trên vẫn đúng khi thay x0+  thành x0  (hoặc +∞, −∞).

8. Hàm số liên tục tại một điểm

Cho hàm số y = f(x) xác định trên khoảng K và x0 K.

Hàm số y = f(x) được gọi là liên tục tại điểm x0 nếulimxx0f(x) = f(x0) .

Nhận xét: Để hàm số y = f(x) liên tục tại x0 thì phải có cả ba điều sau:

• Hàm số xác định tại x0;

• Tồn tại limxx0f(x) ;

limxx0 f(x) = f(x0) .

Chú ý: Khi hàm số y = f(x) không liên tục tại điểm x0 thì ta nói f (x) gián đoạn tại điểm  x0 và x0 được gọi là điểm gián đoạn của hàm số f (x).

9. Hàm số liên tục trên một khoảng, trên một đoạn

• Cho hàm số y = f(x) xác định trên khoảng (a; b).

Hàm số y = f(x) được gọi là liên tục trên khoảng (a; b) nếu f(x) liên tục tại mọi điểm trong khoảng ấy.

• Cho hàm số y = f(x) xác định trên đoạn [a; b].

Hàm số y = f(x) được gọi là liên tục trên đoạn [a; b] nếu f(x) liên tục trên khoảng (a; b) và limxa+f(x) = f(a), limxbf(x) = f(b).

Nhận xét: Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a).f(b) < 0 thì luôn tồn tại ít nhất một điểm c (a; b) sao cho f (c) = 0.

10. Tính liên tục của hàm số sơ cấp

• Hàm số đa thức y = P (x)  , các hàm số lượng giác y = sin x, y = cos x liên tục trên ℝ.

• Hàm số phân thức y = P (x)Q (x), hàm số căn thức y = P(x), các hàm số lượng giác y=tanx,y=cotx  liên tục trên các khoảng của tập xác định của chúng.

Trong đó P(x) và Q(x) là các đa thức.

Nhận xét: Hàm số thuộc những loại trên được gọi chung là hàm số sơ cấp.

Sau đây, khi nói xét tính liên tục của một hàm số mà không nói gì thêm thì ta xét tính liên tục của hàm số đó trên những khoảng xác định của nó.

11. Tổng, hiệu, tích, thương của hàm số liên tục

Cho hai hàm số số y = f(x) và y = g(x) liên tục tại điểm x0. Khi đó:

• Các hàm số y = f(x) + g(x); y = f(x) – g(x) và y = f(x).g(x) liên tục tại x0.

• Hàm số y = f(x)g(x) liên tục tại x0 nếu g(x0) ≠ 0.

Bài tập tổng hợp Toán 11 Chương 3

Bài 1. Tính các giới hạn sau:

a) lim2n+6n3 ;

b) limn3n+312n3 ;

c) lim3n4n+23.4n5.2n .

Hướng dẫn giải

a) lim2n+6n3=lim2+6n13n=2 ;

b) limn3n+312n3=lim1nn3+3n31n32=lim11n2+3n31n32=12 ;

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Bài 2. Tìm số hạng tổng quát của cấp số nhân lùi vô hạn có công bội là -35 và tính tổng của cấp số nhân lùi vô hạn.

Hướng dẫn giải

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Suy ra số hạng đầu tiên của dãy là: u1 = 1.

Khi đó tổng cấp số nhân lùi vô hạn là: 

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Vậy số hạng tổng quát của cấp số nhân lùi vô hạn là: Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo  và tổng của cấp số nhân lùi vô hạn là S=58 .

Bài 3. Tính các giới hạn sau:

a) lim2n3+n24n13 ;

b) lim4.2n2.3n+13n .

Hướng dẫn giải

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Bài 4. Tính các giới hạn sau:

a) limx24x4xx24 ;

b) limx13x23x3x+12 .

Hướng dẫn giải

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Bài 5. Tìm các giới hạn sau:

a) A = limx+x(4x2+92x);

b) B = limx(x22x+2x).

Hướng dẫn giải

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

=limx2+2x12x+2x21=+

Bài 6. Chứng minh không tồn tại giới hạn của hàm số f(x) = sin1x khi x tiến tới 0.

Hướng dẫn giải

Xét hai dãy số xn=12nπ;yn=1π2+2nπ

Suy ra  limxn=lim12nπ=12πlim1n=12π.0=0

Và limyn=lim1π2+2nπ=1π2+2πlimn=0

Khi đó ta xét:

• lim f(xn) = limsin (2nπ) = 0;

• lim f (yn) = limsin (π2+2nπ) = 1.

Do lim f(xn lim f (yn) (0 1) nên hàm số f(x) = sin1x  không tồn tại giới hạn khi x tiến tới 0.

Bài 1. Tìm giá trị m để hàm số sau đây liên tục trên tập xác định:

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Hướng dẫn giải

Tập xác định của hàm số là D = ℝ.

Xét trường hợp x ≠ 1, hàm số có dạng f(x) = x23x+2x1, là hàm số phân thức trên tập xác định (–∞; 1) ∪ (1; +∞) nên nó liên tục trên các khoảng (–∞; 1) và (1; +∞).

Xét trường hợp x = 1, ta có:

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

• f(1) = 2m. 1+1= 2m +1

Khi đó, để hàm f (x) liên tục tại điểm x0 = 1 thì:

limx1f(x) = f(1)2m+1= -1m = - 1

Vậy m = −1 là giá trị của tham số m cần tìm.

Bài 2. Xét tính liên tục của hàm số sau đây tại điểm x = 3.

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Hướng dẫn giải

Ta có:

• limx3+f(x) = limx3+3 = 3

Tổng hợp lý thuyết Toán 11 Chương 3 Chân trời sáng tạo

Do limx3+f(x) limx3f(x) (3 5) nên hàm số gián đoạn tại điểm x = 3.

Bài 3. Chứng minh rằng phương trình 3x3 + x2 – x – 1 có nghiệm trong khoảng (−1; 1).

Hướng dẫn giải

Hàm số f(x) = 3x3 + x2 – x – 1 là một hàm số đa thức, nên f (x) liên tục trên ℝ.

Suy ra, f (x) cũng liên tục trên đoạn [−1; 1].

Ta có:

• f(–1) = 3 . (–1)3 + (–1)2 – (–1) – 1 = –3 + 1 + 1 – 1 = –2;

• f(1) = 3 . 13 + 12 – 1 – 1 = 3 + 1 – 1 – 1 = 2.

Suy ra f(–1) . f(1) = (–2) . 2 = – 4 < 0.

Do vậy, có ít nhất một nghiệm c (−1; 1) sao cho f (c) = 0.

Vậy phương trình 3x3 + x2 – x – 1 có nghiệm trong khoảng (−1; 1).

Học tốt Toán 11 Chương 3

Các bài học để học tốt Tổng hợp lý thuyết Toán 11 Chương 3 Toán lớp 11 hay khác: