Toán 11 Kết nối tri thức Bài 17: Hàm số liên tục

Giải Toán 11 | No tags

Mục lục

Với giải bài tập Toán 11 Bài 17: Hàm số liên tục sách Kết nối tri thức hay nhất, chi tiết giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 Bài 17.

Giải Toán 11 Kết nối tri thức Bài 17: Hàm số liên tục

Giải Toán 11 trang 119

Mở đầu trang 119 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

Mở đầu trang 119 Toán 11 Tập 1: Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.

Mở đầu trang 119 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Lời giải:

Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:

Theo giả thiết, vận tốc trung bình của xe là va1803 = 60(km/h).

Gọi v(t) là hàm biểu thị vận tốc của xe tại thời điểm t.

Tại thời điểm xuất phát t0, vận tốc của xe v(t0) = 0 nên có một thời điểm t1 xe chạy với vận tốc v(t1) > va.

Xét hàm số f(t) = v(t) – va, rõ ràng f(t) là hàm số liên tục trên đoạn [t0; t1].

Hơn nữa, ta có f(t0) = – va < 0, f(t1) = v(t1) – va > 0 (do v(t1) > va), nên tồn tại thời điểm t* thuộc khoảng (t0; t1) sao cho f(t*) = 0. Khi đó ta có v(t*) – va = 0 hay v(t*) = va = 60.

Vậy có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

HĐ1 trang 119 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

HĐ1 trang 119 Toán 11 Tập 1: Nhận biết tính liên tục của hàm số tại một điểm

Cho hàm số HĐ1 trang 119 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Tìm giới hạn limx1fx và so sánh giá trị này với f(1).

Lời giải:

Ta có: f(1) = 2.

limx1fx=limx1x21x1=limx1x1x+1x1=limx1x+1=1+1=2.

Vậy limx1fx = f(1).

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

Luyện tập 1 trang 120 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

Luyện tập 1 trang 120 Toán 11 Tập 1: Xét tính liên tục của hàm số Luyện tập 1 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 tại điểm x0 = 0.

Lời giải:

Hàm số f(x) xác định trên ℝ, do đó x0 = 0 thuộc tập xác định của hàm số.

Ta có: limx0+fx=limx0+x2=02=0; limx0fx=limx0x=0.

Do đó, limx0+fx=limx0fx=0, suy ra limx0fx=0.

Lại có f(0) = 0 nên limx0fx=f0. Vậy hàm số f(x) liên tục tại x0 = 0.

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

HĐ2 trang 120 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

HĐ2 trang 120 Toán 11 Tập 1: Cho hai hàm số HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 với đồ thị tương ứng như Hình 5.7.

HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Xét tính liên tục của các hàm số f(x) và g(x) tại điểm x=12 và nhận xét về sự khác nhau giữa hai đồ thị.

Lời giải:

+) Hàm số HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Hàm số f(x) xác định trên [0; 1], do đó x=12 thuộc tập xác định của hàm số.

Ta có: limx12+fx=limx12+1=1; limx12fx=limx122x=212=1.

Suy ra limx12+fx=limx12fx=1, do đó limx12fx=1

f12=212=1 nên limx12fx=f12.

Vậy hàm số f(x) liên tục tại x=12.

+) Hàm số HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Hàm số g(x) xác định trên [0; 1], do đó x=12 thuộc tập xác định của hàm số.

Ta có: limx12gx=limx12x=12; limx12+gx=limx12+1=1

Suy ra limx12+gxlimx12gx.

Vậy không tồn tại giới hạn của hàm số g(x) tại x=12, do đó hàm số g(x) gián đoạn tại x=12.

+) Quan sát Hình 5.7 ta thấy, đồ thị của hàm số y = f(x) là đường liền trên (0; 1), còn đồ thị của hàm số y = g(x) trên (0; 1) là các đoạn rời nhau.

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

Luyện tập 2 trang 121 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

Luyện tập 2 trang 121 Toán 11 Tập 1: Tìm các khoảng trên đó hàm số fx=x2+1x+2 liên tục.

Lời giải:

Biểu thức x2+1x+2 có nghĩa khi x + 2 ≠ 0 hay x ≠ – 2.

Do đó, tập xác định của hàm số f(x) là (–∞; – 2) ∪ (– 2; +∞).

Vậy hàm số f(x) liên tục trên các khoảng (–∞; – 2) và (– 2; +∞).

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

HĐ3 trang 121 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

HĐ3 trang 121 Toán 11 Tập 1: Cho hai hàm số f(x) = x2 và g(x) = – x + 1.

a) Xét tính liên tục của hai hàm số trên tại x = 1.

b) Tính HĐ3 trang 121 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 và so sánh L với f(1) + g(1).

Lời giải:

a) Hàm số f(x) = x2 và g(x) = – x + 1 là các hàm đa thức nên nó liên tục trên ℝ.

Do đó, hai hàm số f(x) và g(x) đều liên tục tại x = 1.

b) Ta có: f(x) + g(x) = x2 + (– x + 1) = x2 – x + 1.

Do đó, HĐ3 trang 121 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11=limx1x2x+1=121+1=1.

Lại có, f(1) = 12 = 1; g(1) = – 1 + 1 = 0, do đó f(1) + g(1) = 1 + 0 = 1.

Vậy L = f(1) + g(1) = 1.

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

Vận dụng trang 122 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

Vận dụng trang 122 Toán 11 Tập 1: Giải bài toán ở tình huống mở đầu.

Lời giải:

Theo giả thiết, vận tốc trung bình của xe là va1603 = 60 (km/h).

Gọi v(t) là hàm biểu thị vận tốc của xe tại thời điểm t.

Tại thời điểm xuất phát t0, vận tốc của xe v(t0) = 0 nên có một thời điểm t1 xe chạy với vận tốc v(t1) > va.

Xét hàm số f(t) = v(t) – va, rõ ràng f(t) là hàm số liên tục trên đoạn [t0; t1].

Hơn nữa, ta có f(t0) = – va < 0, f(t1) = v(t1) – va > 0 (do v(t1) > va), nên tồn tại thời điểm t* thuộc khoảng (t0; t1) sao cho f(t*) = 0. Khi đó ta có v(t*) – va = 0 hay v(t*) = va = 60.

Vậy có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

Bài 5.14 trang 122 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

Bài 5.14 trang 122 Toán 11 Tập 1: Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 2 và Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11. Tính g(1).

Lời giải:

Vì hàm số f(x) liên tục tại x = 1 nên hàm số 2f(x) cũng liên tục tại x = 1.

Mà hàm số g(x) liên tục tại x = 1. Do đó, hàm số y = 2f(x) – g(x) liên tục tại x = 1.

Suy ra Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 và f(1) = 2 nên ta có 3 = 2 . 2 – g(1) ⇔ g(1) = 1.

Vậy g(1) = 1.

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

Bài 5.15 trang 122 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

Bài 5.15 trang 122 Toán 11 Tập 1: Xét tính liên tục của các hàm số sau trên tập xác định của chúng:

a) fx=xx2+5x+6;

b) Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Lời giải:

a) fx=xx2+5x+6

Biểu thức xx2+5x+6 có nghĩa khi x2 + 5x + 6 ≠ 0 ⇔ (x + 2)(x + 3) ≠ 0 Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Do đó, tập xác định của hàm số f(x) là ℝ \ {– 3; – 2} = (–∞; – 3) ∪ (– 3; – 2) ∪ (– 2; +∞).

Vì f(x) là hàm phân thức hữu tỉ nên nó liên tục trên tập xác định.

Vậy hàm số f(x) liên tục trên các khoảng (–∞; – 3), (– 3; – 2) và (– 2; +∞).

b) Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Tập xác định của hàm số là ℝ.

+) Nếu x < 1, thì f(x) = 1 + x2.

Đây là hàm đa thức nên có tập xác định là ℝ.

Vậy nó liên tục trên (–∞; 1).

+) Nếu x > 1, thì f(x) = 4 – x.

Đây là hàm đa thức nên có tập xác định là ℝ.

Vậy nó liên tục trên (1; +∞).

+) Ta có: limx1+fx=limx1+4x=41=3;

limx1fx=limx11+x2=1+12=2.

Suy ra limx1+fxlimx1fx, do đó không tồn tại giới hạn của f(x) tại x = 1.

Khi đó, hàm số f(x) không liên tục tại x = 1.

Vậy hàm số đã cho liên tục trên các khoảng (–∞; 1), (1; +∞) và gián đoạn tại x = 1.

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

Bài 5.16 trang 122 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

Bài 5.16 trang 122 Toán 11 Tập 1: Tìm giá trị của tham số m để hàm số Bài 5.16 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 liên tục trên ℝ.

Lời giải:

Tập xác định của hàm số là ℝ.

+) Nếu x > 0, thì f(x) = sin x. Do đó nó liên tục trên (0; +∞).

+) Nếu x < 0, thì f(x) = – x + m, đây là hàm đa thức nên nó liên tục trên (–∞; 0).

Khi đó, hàm số f(x) liên tục trên các khoảng (–∞; 0) và (0; +∞).

Do đó, để hàm số f(x) liên tục trên ℝ thì f(x) phải liên tục tại x = 0. Điều này xảy ra khi và chỉ khi limx0fx=f0limx0+fx=limx0fx=f0 (1).

Lại có: limx0+fx=limx0+sin x=0; f(0) = sin 0 = 0; limx0fx=limx0x+m=m .

Khi đó, (1) ⇔ m = 0.

Vậy m = 0 thì thỏa mãn yêu cầu bài toán.

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

Bài 5.17 trang 122 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

Bài 5.17 trang 122 Toán 11 Tập 1: Một bảng giá cước taxi được cho như sau:

Giá mở cửa

(0,5 km đầu)

Giá cước các km tiếp theo đến 30 km

Giá cước từ km thứ 31

10 000 đồng

13 500 đồng

11 000 đồng

a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.

b) Xét tính liên tục của hàm số ở câu a.

Lời giải:

a) Gọi x (km, x > 0) là quãng đường khách di chuyển và y (đồng) là số tiền khách phải trả theo quãng đường di chuyển x.

Với x ≤ 0,5, ta có y = 10 000.

Với 0,5 < x ≤ 30, ta có: y = 10 000 + 13 500(x – 0,5) hay y = 13 500x + 3 250.

Với x > 30, ta có: y = 10 000 + 13 500 . 29,5 + 11 000(x – 30) hay y = 11 000x + 78 250.

Vậy công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển là

Bài 5.17 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

b) +) Với 0 < x < 0,5 thì y = 10 000 là hàm hằng nên nó liên tục trên (0; 0,5).

+) Với 0,5 < x < 30 thì y = 13500x + 3 250 là hàm đa thức nên nó liên tục trên (0,5; 30).

+) Với x > 30 thì y = 11 000x + 78 250 là hàm đa thức nên nó liên tục trên (30; +∞).

+) Ta xét tính liên tục của hàm số tại x = 0,5 và x = 30.

- Tại x = 0,5, ta có y(0,5) = 10 000;

limx0,5y=limx0,510 000=10 000;

limx0,5+y=limx0,5+13 500x+3250= 13 500 . 0,5 + 3 250 = 10 000.

Do đó, limx0,5y=limx0,5+y=limx0,5y=y0,5 nên hàm số liên tục tại x = 0,5.

- Tại x = 30, ta có: y(30) = 13 500 . 30 + 3 250 = 408 250;

limx30y=limx3013 500x+3250 = 13 500 . 30 + 3 250 = 408 250;

limx30+y=limx30+11 000x+78 250 = 11 000 . 30 + 78 250 = 408 250.

Do đó, limx30y=limx30+y=limx30y=y30 nên hàm số liên tục tại x = 30.

Vậy hàm số ở câu a liên tục trên (0; +∞).

Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:

SBT Toán 11 Kết nối tri thức Bài 17: Hàm số liên tục

Với giải sách bài tập Toán 11 Bài 17: Hàm số liên tục sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 17.

Giải SBT Toán 11 Kết nối tri thức Bài 17: Hàm số liên tục

Hàm số liên tục (Lý thuyết Toán lớp 11) | Kết nối tri thức

Với tóm tắt lý thuyết Toán 11 Bài 17: Hàm số liên tục sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 11.

Hàm số liên tục (Lý thuyết Toán lớp 11) | Kết nối tri thức

Lý thuyết Hàm số liên tục

1. Hàm số liên tục tại một điểm

Cho hàm số y = f(x) xác định trên khoảng (a; b) chứa điểm x0. Hàm số f(x) được gọi là liên tục tại điểm x0 nếu limxx0 f(x) = f(x0).

Hàm số f(x) không liên tục tại x0 được gọi là gián đoạn tại điểm đó.

Ví dụ: Xét tính liên tục của hàm số g(x) = 2x+12x1 tại điểm x0 = 1.

Hướng dẫn giải

Ta thấy hàm số g(x) xác định trên ℝ \ Hàm số liên tục (Lý thuyết Toán lớp 11) | Kết nối tri thức, do đó x0 = 1 thuộc tập xác định của hàm số.

Ta có: g(1) = 2.1+12.11= 3

limx1 gx = limx1 2x+12x1 = 3 = g(1).

Vậy hàm số g(x) liên tục tại x0 = 1.

2. Hàm số liên tục trên một khoảng

- Hàm số y = f(x) được gọi là liên tục trên khoảng (a; b) nếu nó liên tục tại mọi điểm thuộc khoảng này.

- Hàm số y = f(x) được gọi là liên tục trên đoạn [a; b] nếu nó liên tục trên khoảng (a; b) và limxa+f(x) = f(a), limxbf(x) = f(b).

- Các khái niệm hàm số liên tục trên nửa khoảng như (a; b], [a; +∞),… được định nghĩa theo cách tương tự. Có thể thấy đồ thị của hàm số liên tục trên một khoảng là một đường liền trên khoảng đó.

- Về tính liên tục của các hàm số sơ cấp cơ bản đã biết, ta có:

+ Hàm số đa thức và các hàm số y = sin x, y = cos x liên tục trên ℝ.

+ Các hàm số y = tan x, y = cot x, y = x và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.

Ví dụ: Cho hàm số f(x) = x+2x2. Tìm các khoảng trên đó hàm số f(x) liên tục.

Hướng dẫn giải

Tập xác định của hàm số f(x) là (–∞; 2) ∪ (2; +∞). Vậy hàm số f(x) liên tục trên các khoảng (–∞; 2) và (2; +∞).

3. Một số tính chất cơ bản

Giả sử hai hàm số y = f(x) và y = g(x) liên tục tại điểm x0. Khi đó:

a) Các hàm số y = f(x) + g(x), y = f(x) – g(x) và y = f(x) . g(x) liên tục tại x0;

b) Hàm số y = Hàm số liên tục (Lý thuyết Toán lớp 11) | Kết nối tri thức liên tục tại x0 nếu g(x0) ≠ 0.

Ví dụ: Xét tính liên tục của hàm số f(x) = cosx3x.

Hướng dẫn giải:

Hàm số đã cho xác định trên các khoảng (–∞; 3) và (3; +∞). Trên các khoảng này, tử thức (hàm lượng giác) và mẫu thức (hàm đa thức) là các hàm số liên tục. Do đó, hàm số f(x) liên tục trên ℝ \{3}.

Nhận xét: Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì tồn tại ít nhất một điểm c ∈ (a; b) sao cho f(c) = 0.

Hàm số liên tục (Lý thuyết Toán lớp 11) | Kết nối tri thức

Ví dụ: Phương trình 2x3 – 6x + 1 = 0 có ít nhất bao nhiêu nghiệm thực thuộc khoảng (–2; 2) ?

Hướng dẫn giải

Vì hàm số f(x) = 2x3 – 6x + 1 liên tục trên ℝ nên nó liên tục trên đoạn[– 2; 2].

Ta có: f(–2) = –3 ; f(2) = 5 ; f(0) = 1 ; f(1) = – 3.

Ta thấy:

+) f(– 2). f(0) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (–2; 0).

+) f(0) . f(1) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (0; 1).

+) f(1) . f(2) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (1; 2).

Do đó phương trình: 2x3 – 6x + 1 = 0 có ít nhất 3 nghiệm thực thuộc khoảng (– 2; 2).

Bài tập Hàm số liên tục

Bài 1: Cho hàm số f(x) = Hàm số liên tục (Lý thuyết Toán lớp 11) | Kết nối tri thức. Tìm giá trị của m để f(x) liên tục trên [0; +∞).

Hướng dẫn giải

+) Với x ∈ (0; 9): f(x) = 39xx liên tục trên (0; 9).

+) Với x ∈ [9; +∞) thì f(x) = 3x liên tục trên [9; +∞).

+) Tại x = 0 ta có f(0) = m

Hàm số liên tục (Lý thuyết Toán lớp 11) | Kết nối tri thức

Vậy để hàm số liên tục trên [0; +∞) khi nó phải liên tục tại x = 0.

Suy ra: limx0+f(x) = mm = 16.

Vậy m = 16 thì f(x) liên tục trên [0; +∞).

Bài 2: Cho hàm số f(x) = Hàm số liên tục (Lý thuyết Toán lớp 11) | Kết nối tri thức. Xét tính liên tục của hàm số tại x = 0.

Hướng dẫn giải

Ta có: f(0) = 0

limx0+f(x) = limx0+(x2+1) = 1

limx0f(x) = limx0x = 0

Vậy f(x) gián đoạn tại x = 0.

Bài 3: Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 3 và limx1[2f(x)-g(x)] = 4. Tính g(1).

Hướng dẫn giải

Vì hàm số f(x) liên tục tại x = 1 nên hàm số 2f(x) cũng liên tục tại x = 1.

Mà hàm số g(x) liên tục tại x = 1. Do đó, hàm số y = 2f(x) – g(x) liên tục tại x = 1.

Suy ra: limx1[2f(x)-g(x)] = 2f(1) – g(1) = 4

Mà f(1) = 3 nên ta có: 2 . 3 – g(1) = 4, suy ra g(1) = 2.

Vậy g(1) = 2.

Học tốt Hàm số liên tục

Các bài học để học tốt Hàm số liên tục Toán lớp 11 hay khác:

12 Bài tập Hàm số liên tục (có đáp án) - Kết nối tri thức Trắc nghiệm Toán 11

Với 12 bài tập trắc nghiệm Hàm số liên tục Toán lớp 11 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 11.

12 Bài tập Hàm số liên tục (có đáp án) - Kết nối tri thức Trắc nghiệm Toán 11

Nội dung đang được cập nhật ...

Xem thêm bài tập trắc nghiệm Toán lớp 11 Kết nối tri thức có đáp án hay khác: