Giải Toán 11 | No tags
Mở đầu trang 119 Toán 11 Tập 1: Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Lời giải:
Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:
Theo giả thiết, vận tốc trung bình của xe là va = = 60(km/h).
Gọi v(t) là hàm biểu thị vận tốc của xe tại thời điểm t.
Tại thời điểm xuất phát t0, vận tốc của xe v(t0) = 0 nên có một thời điểm t1 xe chạy với vận tốc v(t1) > va.
Xét hàm số f(t) = v(t) – va, rõ ràng f(t) là hàm số liên tục trên đoạn [t0; t1].
Hơn nữa, ta có f(t0) = – va < 0, f(t1) = v(t1) – va > 0 (do v(t1) > va), nên tồn tại thời điểm t* thuộc khoảng (t0; t1) sao cho f(t*) = 0. Khi đó ta có v(t*) – va = 0 hay v(t*) = va = 60.
Vậy có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
HĐ1 trang 119 Toán 11 Tập 1: Nhận biết tính liên tục của hàm số tại một điểm
Cho hàm số
Tìm giới hạn và so sánh giá trị này với f(1).
Lời giải:
Ta có: f(1) = 2.
.
Vậy = f(1).
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
Luyện tập 1 trang 120 Toán 11 Tập 1: Xét tính liên tục của hàm số tại điểm x0 = 0.
Lời giải:
Hàm số f(x) xác định trên ℝ, do đó x0 = 0 thuộc tập xác định của hàm số.
Ta có: ; .
Do đó, , suy ra .
Lại có f(0) = 0 nên . Vậy hàm số f(x) liên tục tại x0 = 0.
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
HĐ2 trang 120 Toán 11 Tập 1: Cho hai hàm số với đồ thị tương ứng như Hình 5.7.
Xét tính liên tục của các hàm số f(x) và g(x) tại điểm và nhận xét về sự khác nhau giữa hai đồ thị.
Lời giải:
+) Hàm số
Hàm số f(x) xác định trên [0; 1], do đó thuộc tập xác định của hàm số.
Ta có: ; .
Suy ra , do đó
Mà nên .
Vậy hàm số f(x) liên tục tại .
+) Hàm số
Hàm số g(x) xác định trên [0; 1], do đó thuộc tập xác định của hàm số.
Ta có: ;
Suy ra .
Vậy không tồn tại giới hạn của hàm số g(x) tại , do đó hàm số g(x) gián đoạn tại .
+) Quan sát Hình 5.7 ta thấy, đồ thị của hàm số y = f(x) là đường liền trên (0; 1), còn đồ thị của hàm số y = g(x) trên (0; 1) là các đoạn rời nhau.
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
Luyện tập 2 trang 121 Toán 11 Tập 1: Tìm các khoảng trên đó hàm số liên tục.
Lời giải:
Biểu thức có nghĩa khi x + 2 ≠ 0 hay x ≠ – 2.
Do đó, tập xác định của hàm số f(x) là (–∞; – 2) ∪ (– 2; +∞).
Vậy hàm số f(x) liên tục trên các khoảng (–∞; – 2) và (– 2; +∞).
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
HĐ3 trang 121 Toán 11 Tập 1: Cho hai hàm số f(x) = x2 và g(x) = – x + 1.
a) Xét tính liên tục của hai hàm số trên tại x = 1.
b) Tính và so sánh L với f(1) + g(1).
Lời giải:
a) Hàm số f(x) = x2 và g(x) = – x + 1 là các hàm đa thức nên nó liên tục trên ℝ.
Do đó, hai hàm số f(x) và g(x) đều liên tục tại x = 1.
b) Ta có: f(x) + g(x) = x2 + (– x + 1) = x2 – x + 1.
Do đó, .
Lại có, f(1) = 12 = 1; g(1) = – 1 + 1 = 0, do đó f(1) + g(1) = 1 + 0 = 1.
Vậy L = f(1) + g(1) = 1.
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
Vận dụng trang 122 Toán 11 Tập 1: Giải bài toán ở tình huống mở đầu.
Lời giải:
Theo giả thiết, vận tốc trung bình của xe là va = = 60 (km/h).
Gọi v(t) là hàm biểu thị vận tốc của xe tại thời điểm t.
Tại thời điểm xuất phát t0, vận tốc của xe v(t0) = 0 nên có một thời điểm t1 xe chạy với vận tốc v(t1) > va.
Xét hàm số f(t) = v(t) – va, rõ ràng f(t) là hàm số liên tục trên đoạn [t0; t1].
Hơn nữa, ta có f(t0) = – va < 0, f(t1) = v(t1) – va > 0 (do v(t1) > va), nên tồn tại thời điểm t* thuộc khoảng (t0; t1) sao cho f(t*) = 0. Khi đó ta có v(t*) – va = 0 hay v(t*) = va = 60.
Vậy có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
Bài 5.14 trang 122 Toán 11 Tập 1: Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 2 và . Tính g(1).
Lời giải:
Vì hàm số f(x) liên tục tại x = 1 nên hàm số 2f(x) cũng liên tục tại x = 1.
Mà hàm số g(x) liên tục tại x = 1. Do đó, hàm số y = 2f(x) – g(x) liên tục tại x = 1.
Suy ra
Vì và f(1) = 2 nên ta có 3 = 2 . 2 – g(1) ⇔ g(1) = 1.
Vậy g(1) = 1.
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
Bài 5.15 trang 122 Toán 11 Tập 1: Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) ;
b)
Lời giải:
a)
Biểu thức có nghĩa khi x2 + 5x + 6 ≠ 0 ⇔ (x + 2)(x + 3) ≠ 0
Do đó, tập xác định của hàm số f(x) là ℝ \ {– 3; – 2} = (–∞; – 3) ∪ (– 3; – 2) ∪ (– 2; +∞).
Vì f(x) là hàm phân thức hữu tỉ nên nó liên tục trên tập xác định.
Vậy hàm số f(x) liên tục trên các khoảng (–∞; – 3), (– 3; – 2) và (– 2; +∞).
b)
Tập xác định của hàm số là ℝ.
+) Nếu x < 1, thì f(x) = 1 + x2.
Đây là hàm đa thức nên có tập xác định là ℝ.
Vậy nó liên tục trên (–∞; 1).
+) Nếu x > 1, thì f(x) = 4 – x.
Đây là hàm đa thức nên có tập xác định là ℝ.
Vậy nó liên tục trên (1; +∞).
+) Ta có: ;
.
Suy ra , do đó không tồn tại giới hạn của f(x) tại x = 1.
Khi đó, hàm số f(x) không liên tục tại x = 1.
Vậy hàm số đã cho liên tục trên các khoảng (–∞; 1), (1; +∞) và gián đoạn tại x = 1.
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
Bài 5.16 trang 122 Toán 11 Tập 1: Tìm giá trị của tham số m để hàm số liên tục trên ℝ.
Lời giải:
Tập xác định của hàm số là ℝ.
+) Nếu x > 0, thì f(x) = sin x. Do đó nó liên tục trên (0; +∞).
+) Nếu x < 0, thì f(x) = – x + m, đây là hàm đa thức nên nó liên tục trên (–∞; 0).
Khi đó, hàm số f(x) liên tục trên các khoảng (–∞; 0) và (0; +∞).
Do đó, để hàm số f(x) liên tục trên ℝ thì f(x) phải liên tục tại x = 0. Điều này xảy ra khi và chỉ khi (1).
Lại có: ; f(0) = sin 0 = 0; .
Khi đó, (1) ⇔ m = 0.
Vậy m = 0 thì thỏa mãn yêu cầu bài toán.
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
Bài 5.17 trang 122 Toán 11 Tập 1: Một bảng giá cước taxi được cho như sau:
Giá mở cửa (0,5 km đầu) |
Giá cước các km tiếp theo đến 30 km |
Giá cước từ km thứ 31 |
10 000 đồng |
13 500 đồng |
11 000 đồng |
a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.
b) Xét tính liên tục của hàm số ở câu a.
Lời giải:
a) Gọi x (km, x > 0) là quãng đường khách di chuyển và y (đồng) là số tiền khách phải trả theo quãng đường di chuyển x.
Với x ≤ 0,5, ta có y = 10 000.
Với 0,5 < x ≤ 30, ta có: y = 10 000 + 13 500(x – 0,5) hay y = 13 500x + 3 250.
Với x > 30, ta có: y = 10 000 + 13 500 . 29,5 + 11 000(x – 30) hay y = 11 000x + 78 250.
Vậy công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển là
b) +) Với 0 < x < 0,5 thì y = 10 000 là hàm hằng nên nó liên tục trên (0; 0,5).
+) Với 0,5 < x < 30 thì y = 13500x + 3 250 là hàm đa thức nên nó liên tục trên (0,5; 30).
+) Với x > 30 thì y = 11 000x + 78 250 là hàm đa thức nên nó liên tục trên (30; +∞).
+) Ta xét tính liên tục của hàm số tại x = 0,5 và x = 30.
- Tại x = 0,5, ta có y(0,5) = 10 000;
;
= 13 500 . 0,5 + 3 250 = 10 000.
Do đó, nên hàm số liên tục tại x = 0,5.
- Tại x = 30, ta có: y(30) = 13 500 . 30 + 3 250 = 408 250;
= 13 500 . 30 + 3 250 = 408 250;
= 11 000 . 30 + 78 250 = 408 250.
Do đó, nên hàm số liên tục tại x = 30.
Vậy hàm số ở câu a liên tục trên (0; +∞).
Lời giải bài tập Toán 11 Bài 17: Hàm số liên tục hay, chi tiết khác:
Với giải sách bài tập Toán 11 Bài 17: Hàm số liên tục sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 17.
Với tóm tắt lý thuyết Toán 11 Bài 17: Hàm số liên tục sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 11.
1. Hàm số liên tục tại một điểm
Cho hàm số y = f(x) xác định trên khoảng (a; b) chứa điểm x0. Hàm số f(x) được gọi là liên tục tại điểm x0 nếu f(x) = f(x0).
Hàm số f(x) không liên tục tại x0 được gọi là gián đoạn tại điểm đó.
Ví dụ: Xét tính liên tục của hàm số g(x) = tại điểm x0 = 1.
Hướng dẫn giải
Ta thấy hàm số g(x) xác định trên ℝ \ , do đó x0 = 1 thuộc tập xác định của hàm số.
Ta có: g(1) = = 3
= 3 = g(1).
Vậy hàm số g(x) liên tục tại x0 = 1.
2. Hàm số liên tục trên một khoảng
- Hàm số y = f(x) được gọi là liên tục trên khoảng (a; b) nếu nó liên tục tại mọi điểm thuộc khoảng này.
- Hàm số y = f(x) được gọi là liên tục trên đoạn [a; b] nếu nó liên tục trên khoảng (a; b) và f(x) = f(a), f(x) = f(b).
- Các khái niệm hàm số liên tục trên nửa khoảng như (a; b], [a; +∞),… được định nghĩa theo cách tương tự. Có thể thấy đồ thị của hàm số liên tục trên một khoảng là một đường liền trên khoảng đó.
- Về tính liên tục của các hàm số sơ cấp cơ bản đã biết, ta có:
+ Hàm số đa thức và các hàm số y = sin x, y = cos x liên tục trên ℝ.
+ Các hàm số y = tan x, y = cot x, y = và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.
Ví dụ: Cho hàm số f(x) = . Tìm các khoảng trên đó hàm số f(x) liên tục.
Hướng dẫn giải
Tập xác định của hàm số f(x) là (–∞; 2) ∪ (2; +∞). Vậy hàm số f(x) liên tục trên các khoảng (–∞; 2) và (2; +∞).
3. Một số tính chất cơ bản
Giả sử hai hàm số y = f(x) và y = g(x) liên tục tại điểm x0. Khi đó:
a) Các hàm số y = f(x) + g(x), y = f(x) – g(x) và y = f(x) . g(x) liên tục tại x0;
b) Hàm số y = liên tục tại x0 nếu g(x0) ≠ 0.
Ví dụ: Xét tính liên tục của hàm số f(x) = .
Hướng dẫn giải:
Hàm số đã cho xác định trên các khoảng (–∞; 3) và (3; +∞). Trên các khoảng này, tử thức (hàm lượng giác) và mẫu thức (hàm đa thức) là các hàm số liên tục. Do đó, hàm số f(x) liên tục trên ℝ \{3}.
Nhận xét: Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì tồn tại ít nhất một điểm c ∈ (a; b) sao cho f(c) = 0.
Ví dụ: Phương trình 2x3 – 6x + 1 = 0 có ít nhất bao nhiêu nghiệm thực thuộc khoảng (–2; 2) ?
Hướng dẫn giải
Vì hàm số f(x) = 2x3 – 6x + 1 liên tục trên ℝ nên nó liên tục trên đoạn[– 2; 2].
Ta có: f(–2) = –3 ; f(2) = 5 ; f(0) = 1 ; f(1) = – 3.
Ta thấy:
+) f(– 2). f(0) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (–2; 0).
+) f(0) . f(1) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (0; 1).
+) f(1) . f(2) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (1; 2).
Do đó phương trình: 2x3 – 6x + 1 = 0 có ít nhất 3 nghiệm thực thuộc khoảng (– 2; 2).
Bài 1: Cho hàm số f(x) = . Tìm giá trị của m để f(x) liên tục trên [0; +∞).
Hướng dẫn giải
+) Với x ∈ (0; 9): f(x) = liên tục trên (0; 9).
+) Với x ∈ [9; +∞) thì f(x) = liên tục trên [9; +∞).
+) Tại x = 0 ta có f(0) = m
Vậy để hàm số liên tục trên [0; +∞) khi nó phải liên tục tại x = 0.
Suy ra: f(x) = mm = .
Vậy m = thì f(x) liên tục trên [0; +∞).
Bài 2: Cho hàm số f(x) = . Xét tính liên tục của hàm số tại x = 0.
Hướng dẫn giải
Ta có: f(0) = 0
f(x) = (x2+1) = 1
f(x) = x = 0
Vậy f(x) gián đoạn tại x = 0.
Bài 3: Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 3 và [2f(x)-g(x)] = 4. Tính g(1).
Hướng dẫn giải
Vì hàm số f(x) liên tục tại x = 1 nên hàm số 2f(x) cũng liên tục tại x = 1.
Mà hàm số g(x) liên tục tại x = 1. Do đó, hàm số y = 2f(x) – g(x) liên tục tại x = 1.
Suy ra: [2f(x)-g(x)] = 2f(1) – g(1) = 4
Mà f(1) = 3 nên ta có: 2 . 3 – g(1) = 4, suy ra g(1) = 2.
Vậy g(1) = 2.
Các bài học để học tốt Hàm số liên tục Toán lớp 11 hay khác:
Với 12 bài tập trắc nghiệm Hàm số liên tục Toán lớp 11 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 11.
Nội dung đang được cập nhật ...
Xem thêm bài tập trắc nghiệm Toán lớp 11 Kết nối tri thức có đáp án hay khác: