Toán 11 Kết nối tri thức Bài tập cuối chương 2 (trang 56, 57)

Giải Toán 11 | No tags

Mục lục

Với giải bài tập Toán 11 Bài tập cuối chương 2 trang 56, 57 sách Kết nối tri thức hay nhất, chi tiết giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 Bài tập cuối chương 2.

Giải Toán 11 Kết nối tri thức Bài tập cuối chương 2 (trang 56, 57)

A. Trắc nghiệm

Giải Toán 11 trang 56

Bài 2.22 trang 56 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.22 trang 56 Toán 11 Tập 1: Khẳng định nào sau đây là sai?

A. Một dãy số tăng thì bị chặn dưới.

B. Một dãy số giảm thì bị chặn trên.

C. Một dãy số bị chặn thì phải tăng hoặc giảm.

D. Một dãy số không đổi thì bị chặn.

Lời giải:

Đáp án đúng là: C

+) Mỗi dãy số tăng đều bị chặn dưới bởi số hạng đầu u1 vì u1 < u2 < u3 < ...., do đó đáp án A đúng.

+) Mỗi dãy số giảm đều bị chặn trên bởi số hạng đầu u1 vì u1 > u2 > u3 > ...., do đó đáp án B đúng.

+) Một dãy số bị chặn không nhất thiết phải là dãy số tăng hoặc giảm. Chẳng hạn ta xét dãy số (un) có số hạng tổng quát un = 1n1sin1n .

Ta có nhận xét rằng dãy số này đan dấu nên nó không tăng, không giảm.

Mặt khác ta có: Bài 2.22 trang 56 Toán 11 Tập 1 - Kết nối tri thức , suy ra dãy số (un) bị chặn.

Vậy đáp án C sai.

+) Đáp án D đúng do dãy số (un) không đổi thì mọi số hạng luôn bằng nhau và luôn tồn tại m, M để m ≤ un ≤ M với mọi n ∈ ℕ*.

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.23 trang 56 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.23 trang 56 Toán 11 Tập 1: Cho dãy số

1, 12, 14, 18, ... (số hạng sau bằng một nửa số hạng liền trước nó).

Công thức tổng quát của dãy số đã cho là

A. un=12n .

B. un=1n2n1 .

C. un=12n .

D. un=12n1 .

Lời giải:

Đáp án đúng là: D

Xét từng đáp án, ta thấy:

+) Đáp án A, dãy số có số hạng tổng quát là un=12n có số hạng đầu u1=121=12, không thỏa mãn.

+) Đáp án B, dãy số có số hạng tổng quát là un=1n2n1 có số hạng đầu u1=11211=1, không thỏa mãn.

+) Đáp án C, dãy số có số hạng tổng quát là un=12n có số hạng đầu u1=12.1=12, không thỏa mãn.

+) Đáp án D, dãy số có số hạng tổng quát là un=12n1 có số hạng đầu u1=1211=1, thỏa mãn.

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.24 trang 56 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.24 trang 56 Toán 11 Tập 1: Cho dãy số (un) với un = 3n + 6. Khẳng định nào sau đây là đúng?

A. Dãy số (un) là cấp số cộng với công sai d = 3.

B. Dãy số (un) là cấp số cộng với công sai d = 6.

C. Dãy số (un) là cấp số nhân với công bội q = 3.

D. Dãy số (un) là cấp số nhân với công bội q = 6.

Lời giải:

Đáp án đúng là: A

Ta có: un – un – 1 = (3n + 6) – [3(n – 1) + 6] = 3n + 6 – (3n – 3 + 6) = 3, với mọi n ≥ 2.

Do đó, (un) là cấp số cộng có công sai d = 3.

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.25 trang 56 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.25 trang 56 Toán 11 Tập 1: Trong các dãy số cho bởi công thức truy hồi sau, dãy số nào là cấp số nhân?

A. u1 = – 1, un+1=un2.

B. u1 = – 1, un + 1 = 2un.

C. u1 = – 1, un + 1 = un + 2.

D. u1 = – 1, un + 1 = u­n – 2.

Lời giải:

Đáp án đúng là: B

Nhận xét thấy dãy số cho bởi công thức truy hồi u1 = – 1, un + 1 = 2unun+1un=2 với mọi n ≥ 1. Do đó, dãy số này là một cấp số nhân với số hạng đầu u1 = – 1 và công bội q = 2.

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.26 trang 56 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.26 trang 56 Toán 11 Tập 1: Tổng 100 số hạng đầu của dãy số (un) với u­n = 2n – 1 là

A. 199.

B. 2100 – 1.

C. 10 000.

D. 9 999.

Lời giải:

Đáp án đúng là: C

Ta có: un – un – 1 = (2n – 1) – [2(n – 1) – 1] = 2n – 1 – (2n – 2 – 1) = 2, với mọi n ≥ 2.

Do đó, dãy số (un) là một cấp số cộng có u1 = 2 . 1 – 1 = 1 và công sai d = 2.

Tổng 100 số hạng đầu tiên của cấp số cộng này là

S100 = 10022u1+1001d = 50(2 . 1 + 99 . 2) = 10 000.

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.27 trang 57 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.27 trang 57 Toán 11 Tập 1: Từ 0 giờ đến 12 giờ trưa, chuông của một chiếc đồng hồ quả lắc sẽ đánh bao nhiêu tiếng, biết rằng nó chỉ đánh chuông báo giờ và số tiếng chuông bằng số giờ?

Lời giải:

Vì đồng hồ đánh chuông báo giờ đúng và số tiếng chuông bằng số giờ nên ta có:

- Lúc 1 giờ đồng hồ đánh 1 tiếng chuông.

- Lúc 2 giờ đồng hồ đánh 2 tiếng chuông.

...

- Lúc 12 giờ trưa đồng hồ đánh 12 tiếng chuông.

Do đó, từ 0 giờ đến 12 giờ trưa, đồng hồ đánh số tiếng chuông là

1 + 2 + 3 + ... + 11 + 12 (tiếng chuông)

Đây là tổng 12 số hạng của cấp số cộng có số hạng đầu u1 = 1, công sai d = 1.

Vậy tổng số tiếng chuông đồng hồ trong khoảng thời gian từ 0 đến 12 giờ trưa là

S12 = 1222u1+121d = 6 . (2 . 1 + 11 . 1) = 78 (tiếng chuông).

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.28 trang 57 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.28 trang 57 Toán 11 Tập 1: Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại phân đôi một lần. Hỏi sau 24 giờ, tế bào ban đầu sẽ phân chia thành bao nhiêu tế bào?

Lời giải:

Vì ban đầu có một tế bào và mỗi lần một tế bào phân chia thành hai tế bào nên ta có cấp số nhân với u1 = 1, q = 2.

Vì cứ 20 phút lại phân đôi một lần nên sau 24 giờ sẽ có 24 . 60 : 20 = 72 lần phân chia tế bào và u73 là số tế bào nhận đươc sau 24 giờ.

Vậy số tế bào nhận được sau 24 giờ phân chia là

u73 = u1 . q73 – 1 = 1 . 273 – 1 = 272 (tế bào).

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.29 trang 57 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.29 trang 57 Toán 11 Tập 1: Chứng minh rằng:

a) Trong một cấp số cộng (un), mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là trung bình cộng của hai số hạng đứng kề với nó, nghĩa là

uk=uk1+uk+12 với k ≥ 2.

b) Trong một cấp số nhân, bình phương của mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là tích của hai số hạng đứng kề với nó, nghĩa là

uk2=uk1.uk+1 với k ≥ 2.

Lời giải:

a) Giả sử (un) là cấp số cộng với công sai d. Khi đó với k ≥ 2, ta có:

uk – 1 = uk – d và uk + 1 = uk + d.

Suy ra uk – 1 + uk + 1 = (uk – d) + (uk + d) = 2uk hay uk=uk1+uk+12 (đpcm).

b) Giả sử cấp số nhân có công bội là q. Khi đó với k ≥ 2, ta có:

uk – 1 = u1 . qk – 1 – 1 = u1 . qk – 2;

uk + 1 = u1 . qk + 1 – 1 = u1 . qk.

Suy ra uk – 1 . uk + 1 = (u1 . qk – 2) . (u1 . qk) = u12.qk2+k=u12.q2k2 = (u1 . qk – 1)2 = uk2 (đpcm).

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.30 trang 57 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.30 trang 57 Toán 11 Tập 1: Tìm ba số, biết theo thứ tự chúng lập thành cấp số cộng và có tổng bằng 21, và nếu lần lượt cộng thêm các số 2; 3; 9 vào ba số đó thì được ba số lập thành một cấp số nhân.

Lời giải:

Giả sử 3 số cần tìm là x, y, z với x < y < z.

Ta có: x + y + z = 21 ⇒ x + z = 21 – y.

Theo Bài 2.29a, vì x, y, z lập thành một cấp số cộng nên y = x+z2.

Do đó, y=21y2. Từ đó suy ra y = 7.

Gọi d là công sai của cấp số cộng thì x = y – d = 7 – d và z = y + d = 7 + d.

Sau khi thêm các số 2; 3; 9 vào ba số x, y, z ta được ba số là x + 2, y + 3, z + 9 hay 9 – d, 10, 16 + d và theo đề bài thì 3 số này lập thành một cấp số nhân.

Áp dụng Bài 2.29b, ta có: (9 – d)(16 + d) = 102

⇔ 144 – 7d – d2 = 100

⇔ d2 + 7d – 44 = 0

Giải phương trình bậc hai trên ta được d = – 11 hoặc d = 4.

+) Với d = – 11, ta có cấp số cộng gồm 3 số 18, 7, – 4.

+) Với d = 4, ta có cấp số cộng gồm 3 số 3, 7, 11.

Vậy có hai bộ ba số cần tìm là (18, 7, – 4) và (3, 7, 11).

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.31 trang 57 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.31 trang 57 Toán 11 Tập 1: Mặt sàn tầng một (tầng trệt) của một ngôi nhà cao hơn mặt sân 0,5 m. Cầu thang đi từ tầng một lên tầng hai gồm 25 bậc, mỗi bậc cao 16 cm.

a) Viết công thức để tìm độ cao của bậc cầu thang thứ n so với mặt sân.

b) Tính độ cao của sàn tầng hai so với mặt sân.

Lời giải:

a) Đổi 16 cm = 0,16 m.

Gọi ui là độ cao từ bậc thang thứ i (của cầu thang) so với mặt sân.

Vì mỗi bậc thang cao 0,16 m, mặt bằng sàn cao hơn mặt sân 0,5 m nên bậc thang đầu tiên sẽ cao hơn so với mặt sân là 0,16 + 0,5 = 0,66 (m) hay u1 = 0,66.

Từ các bậc sau thì: bậc sau cao hơn bậc liền trước nó 0,16 m, nên độ cao so với mặt sân của hai bậc thang liên tiếp cũng hơn kém nhau 0,16 m.

Hay un + 1 = un + 0,16; 1 ≤ n ≤ 25.

Do đó, độ cao từ các bậc thang so với mặt sân, từ bậc 1 đến bậc 25 tạo thành một cấp số cộng với u1 = 0,66 và công sai d = 0,16.

Vậy công thức tính độ cao của bậc cầu thang thứ n so với mặt sân là

un = u1 + (n – 1)d = 0,66 + (n – 1). 0,16 = 0,5 + 0,16n (m).

b) Vì mặt sàn tầng hai có cùng độ cao với bậc thứ 25 (bậc cao nhất) của cầu thang.

Nên độ cao mặt sàn tầng hai so với mặt sân cũng là độ cao từ bậc thứ 25 so với mặt sân.

Vậy độ cao của sàn tầng hai so với mặt sân ứng với n = 25 là

u25 = 0,5 + 0,16 . 25 = 4,5 (m).

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

Bài 2.32 trang 57 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài tập cuối chương 2 - Kết nối tri thức

Bài 2.32 trang 57 Toán 11 Tập 1: Một hình vuông màu vàng có cạnh 1 đơn vị dài được chia thành chín hình vuông nhỏ hơn và hình vuông ở chính giữa được tô màu xanh như Hình 2.1. Mỗi hình vuông màu vàng nhỏ hơn lại được chia thành chín hình vuông con, và mỗi hình vuông con ở chính giữa là được tô màu xanh. Nếu quá trình này được tiếp tục lặp lại năm lần, thì tổng diện tích các hình vuông được tô màu xanh bằng bao nhiêu?

Bài 2.32 trang 57 Toán 11 Tập 1 - Kết nối tri thức

Lời giải:

+ Chia lần 1: Hình vuông màu vàng lớn có cạnh bằng 1 đơn vị thì có diện tích bằng 1 (đvdt). Chia hình vuông này thành 9 hình vuông nhỏ hơn và hình vuông ở chính giữa được tô màu xanh, thì hình vuông màu xanh đầu tiên này có diện tích bằng 19 (đvdt).

+ Chia lần 2: 8 hình vuông màu vàng còn lại, mỗi hình vuông này lại được chia thành 9 hình vuông con và tiếp tục tô xanh hình vuông chính giữa, khi đó mỗi hình vuông xanh nhỏ hơn có diện tích S1 = 1919=192, 8 hình vuông xanh nhỏ hơn có diện tích bằng 8S1.

Cứ tiếp tục như vậy, mỗi lần chia ta sẽ tạo thành 8 hình vuông xanh nhỏ hơn tiếp đối với mỗi ô vuông vàng nhỏ.

Do đó, quá trình này được tiếp tục lặp lại năm lần, thì trừ lần đầu tiên, 4 lần sau, mỗi lần chia diện tích ô vuông xanh tạo thành lập thành một cấp số nhân có u1 = 8.192 và công bội q=8.19.

Vậy tổng diện tích các hình vuông được tô màu xanh là

S = 19+8.1921894189=26 28159 049 (đvdt).

Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:

SBT Toán 11 Kết nối tri thức Bài tập cuối chương 2

Với giải sách bài tập Toán 11 Bài tập cuối chương 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài tập cuối chương 2.

Giải SBT Toán 11 Kết nối tri thức Bài tập cuối chương 2

A. TRẮC NGHIỆM

Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức

Tổng hợp lý thuyết Toán 11 Chương 2: Dãy số. Cấp số cộng và cấp số nhân sách Kết nối tri thức hay nhất, chi tiết với bài tập có lời giải sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm Toán 11 Chương 2.

Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức

Lý thuyết tổng hợp Toán 11 Chương 2

1. Định nghĩa dãy số

1.1. Dãy số vô hạn

Mỗi hàm số u xác định trên tập các số nguyên dương ℕ* được gọi là một dãy số vô hạn (gọi tắt là dãy số), kí hiệu là u = u(n).

Ta thường viết un thay cho u(n) và kí hiệu dãy số u = u(n) bởi (un), do đó dãy số (un) được viết dưới dạng khai triển u1, u2, u3,…., un,…

Số u1 gọi là số hạng đầu, un là số hạng thứ n và gọi là số hạng tổng quát của dãy số.

Chú ý: Nếu ∀n ∈ ℕ*, u­n = c thì (un) được gọi là dãy số không đổi.

1.2. Dãy số hữu hạn

Mỗi hàm số u xác định trên tập M = {1; 2; 3; ...; m} với m ∈ ℕ*, được gọi là một dãy số hữu hạn.

Dạng khai triển của dãy số hữu hạn là u1, u2, u3,…., um.

Số u1 gọi là số hạng đầu, số um gọi là số hạng cuối.

2. Các cách cho một dãy số

• Một dãy số có thể cho bằng:

- Liệt kê các số hạng (chỉ dùng cho các dãy hữu hạn và có ít số hạng);

- Công thức của số hạng tổng quát;

- Phương pháp mô tả;

- Phương pháp truy hồi.

• Hệ thức truy hồi là hệ thức biểu thị số hạng thứ n của dãy số qua số hạng (hay vài số hạng) đứng trước nó.

Chú ý: Để có hình ảnh trực quan về dãy số, ta thường biểu diễn các số hạng của nó trên trục số. Chẳng hạn, xét dãy số (un) với Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức. Năm số hạng đầu của dãy số này là u1=12,u2=14,u3=18,u4=116,u5=132 và được biểu diễn trên trục số như sau:

Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức

3. Dãy số tăng, dãy số giảm và dãy số bị chặn

3.1. Dãy số tăng, dãy số giảm

Dãy số (u) được gọi là dãy số tăng nếu ta có un + 1 > un với mọi n ∈ ℕ*.

Dãy số (u) được gọi là dãy số giảm nếu ta có un + 1 < un với mọi n ∈ ℕ*.

3.2. Dãy số bị chặn

Dãy số (u) được gọi là bị chặn trên nếu tồn tại một số M sao cho un ≤ M với ∀n ∈ ℕ*.

Dãy số (u) được gọi là bị chặn dưới nếu tồn tại một số m sao cho un ≥ m với ∀n ∈ ℕ*.

Dãy số (u) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho m ≤ u ≤ M với ∀n ∈ ℕ*.

4. Định nghĩa cấp số cộng

- Cấp số cộng là một dãy số (hữu hạn hay vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d. Số d được gọi là công sai của cấp số cộng.

- Cấp số cộng (un) với công sai d được cho bởi hệ thức truy hồi: un = un - 1 + d với n ≥ 2.

- Chú ý: Dãy số không đổi a, a, a, ... là một cấp số cộng với số hạng đầu là a và công sai d = 0.

5. Số hạng tổng quát của cấp số cộng

Nếu cấp số cộng (un) có số hạng đầu u1 và công sai d thì số hạng tổng quát un của nó được xác định theo công thức

un = u1 + (n – 1)d.

6. Tổng n số hạng đầu của một cấp số cộng

- Cho cấp số cộng (un) với công sai d. Đặt Sn = u1 + u2 + …. + un. Khi đó

Sn = n2[2u1+(n-1)d].

Chú ý: Sử dụng công thức un = u1 + (n – 1)d, ta có thể viết tổng Sn dưới dạng

Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức

7. Định nghĩa cấp số nhân

- Cấp số nhân là một dãy số (hữu hạn hay vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng tích của số hạng đứng ngay trước nó với một số không đổi q. Số q được gọi là công bội của cấp số nhân.

- Cấp số nhân (un) với công bội q được cho bởi hệ thức truy hồi: un = un–1 . q với n ≥ 2.

Chú ý: Dãy số không đổi a, a, a, .... là một cấp số nhân với số hạng đầu là a và công bội q = 1.

8. Số hạng tổng quát của cấp số nhân

Nếu một cấp số nhân có số hạng đầu uvà công bội q thì số hạng tổng quát ucủa nó được xác định bởi công thức:

un = u1 . qn–1 với n ≥ 2.

9. Tổng n số hạng đầu của một cấp số nhân

Cho cấp số nhân (un) với công sai q ≠ 1. Đặt Sn = u1 + u2 + …. + un. Khi đó:

Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức

Bài tập tổng hợp Toán 11 Chương 2

Bài 1: Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:

a) u­n = 4n – 2;

b) un = 3 . 2n + 1.

Hướng dẫn giải

a) Năm số hạng đầu của dãy số là: 2, 6, 10, 14, 18.

Số hạng thứ 100 của dãy số là: u­100 = 4.100 – 2 = 398.

b) Năm số hạng đầu của dãy số là: 7, 13, 25, 49, 97.

Số hạng thứ 100 của dãy số là: u100 = 3 . 2100 + 1.

Bài 2: Dãy số (un) cho bởi hệ thức truy hồi: u1 = 1, u­n = n . un-1 với n ≥ 2.

a) Viết năm số hạng đầu của dãy số.

b) Dự đoán công thức số hạng tổng quát un.

Hướng dẫn giải

a) Năm số hạng đầu của dãy số là: 1, 2, 6, 24, 120.

b) Ta thấy u1 =1!, u2 = 2!, u3 = 3!, u4 = 4!, u5 = 5!.

Vậy công thức số hạng tổng quát là un = n!.

Bài 3: Xét tính tăng, giảm của dãy số (un), biết:

a) un = 3n – 1;

b) un = – 3n + 1.

Hướng dẫn giải

a) Ta có: un+1 – un = [3(n + 1) – 1] – (3n – 1) = (3n + 2) – 3n + 1 = 3 > 0, tức là un+1 > un

Suy ra đây là dãy số tăng.

b) Ta có: un+1 – un = [–3(n + 1) + 1] – (–3n + 1) = (–3n – 2) + 3n – 1 = – 3 < 0, tức là un+1 < un.

Suy ra đây là dãy số giảm.

Bài 4: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) un = 2n – 1;

b) un = 2n+22n+3;

c) un = cos n.

Hướng dẫn giải

a) un = 2n – 1 ≥ 1 với ∀n ∈ ℕ*

Vậy dãy số (un) bị chặn dưới.

b) Dãy số (un) bị chặn trên, vì un = 2n+22n+3 =2n+312n+3= 1 12n+3 < 1, ∀n ∈ ℕ*.

Dãy số (un) bị chặn dưới, vì un = 2n+22n+3 0, ∀n ∈ ℕ*.

Vậy dãy số (un) bị chặn.

c) Ta có: −1 ≤ cos n ≤ 1 ∀n ∈ ℕ*.

Vậy dãy số (un) bị chặn.

Bài 5: Ông An gửi tiết kiệm 50 triệu đồng kì hạn 1 tháng với lãi suất 7% một năm theo hình thức tính lãi kép. Số tiền (triệu đồng) của ông An thu được sau n tháng được cho bởi công thức

An = 50Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức.

a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.

b) Tìm số tiền ông An nhận được sau 1 năm.

Hướng dẫn giải

a) Số tiền ông An nhận được sau tháng thứ nhất là:

A1 = 50Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức = 50,2917(triệu đồng).

Số tiền ông An nhận được sau tháng thứ hai là:

A2 = 50Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức = 50,585 (triệu đồng).

b) 1 năm = 12 tháng

Số tiền ông An nhận được sau 1 năm là:

A12 = 50Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức = 53,6145(triệu đồng).

Bài 6: Xác định công sai, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số cộng sau:

a) 3, 8, 13, 18, ...;

b) 1, –2, –5, –8, ...

Hướng dẫn giải

a) Ta thấy: 8 – 3 = 5; 13 – 8 = 5

Suy ra cấp số cộng có u1 = 3, công sai d = 5

Số hạng tổng quát của dãy số là: un = 3 + 5(n – 1) = 3 + 5n – 5 = 5n – 2.

Số hạng thứ 5: u5 = 3 + 5 . (5 – 1) = 23

Số hạng thứ 100: u100 = 3 + 5 . (100 – 1) = 498.

b) Ta thấy: –2 – 1= –3; –5 – (–2) = –3

Suy ra cấp số cộng có u1 = 1, công sai d = –3

Số hạng tổng quát của dãy số là: un = 1 – 3(n − 1) = 1 – 3n + 3 = 4 – 3n.

Số hạng thứ 5: u5 = 1 − 3. (5 – 1) = −11

Số hạng thứ 100: u100 = 1 – 3. (100 – 1) = −296.

Bài 7: Viết năm số hạng đầu của mỗi dãy số (un) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng un = u1 + (n – 1)d.

a) un = 3 + 4n;

b) un = 6n − 4;

c) u1 = 3, un = un–1 + n.

Hướng dẫn giải

a) u1 = 7; u2 = 11; u3 = 15; u4 = 19; u5 = 23

Ta có: un − un–1= 3 + 4n − [3 + 4(n − 1)] = 4, với ∀n ≥ 2.

Suy ra dãy số là cấp số cộng có u1 = 7 và công sai d = 4

Số hạng tổng quát: un = 7 + 4(n − 1).

b) u1 = 2; u2 = 8; u3 = 14; u4 = 20; u5 = 26

Ta có: un − un–1 = 6n − 4 − [6(n − 1) − 4] = 6, với ∀ n ≥ 2.

Suy ra dãy số là cấp số cộng có u1 = 2 và công sai d = 6.

Số hạng tổng quát: un = 2 + 6(n − 1).

c) u1 = 3; u2 = 5; u3 = 8; u4 = 12; u5 =17

Ta có: u2 − u1 = 2 ≠ u3 – u2 = 3

Suy ra đây không phải cấp số cộng.

Bài 8: Một cấp số cộng có số hạng thứ 5 bằng 22 và số hạng thứ 12 bằng 43. Tìm số hạng thứ 50 của cấp số cộng này.

Hướng dẫn giải

Giả sử u1 là số hạng đầu và d là công sai của cấp số cộng đó. Ta có:

u5 = u1 + 4d = 22

u12 = u1 + 11d = 43

Giải hệ phương trình gồm hai phương trình trên ta được u1 = 10 và d = 3.

Vậy số hạng thứ 50 của cấp số cộng này là u50 = u + 49d = 10 + 49 . 3 = 157.

Bài 9: Một cấp số cộng có số hạng đầu bằng 1 và công sai bằng 4. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 561?

Hướng dẫn giải

Gọi n là số các số hạng đầu cần lấy tổng, ta có:

561 = Sn = n2[2.1+(n-1).4] = n2(-2+4n) = –n + 2n2

Do đó 2n2 – n – 561 = 0.

Giải phương trình bậc hai này ta được n = –16,5 (loại) hoặc n = 17.

Vậy ta phải lấy 17 số hạng đầu của cấp số cộng đã cho để có tổng bằng 561.

Bài 10: Vào năm 2020, dân số của một thành phố là khoảng 1,5 triệu người. Giả sử mỗi năm, dân số của thành phố này tăng thêm khoảng 15 nghìn người. Hãy ước tính dân số của thành phố vào năm 2030.

Hướng dẫn giải

Dân số mỗi năm của thành phố lập thành cấp số cộng có u1 = 1 500 (nghìn người), công sai d = 15.

Dân số mỗi năm có dạng tổng quát là: un = 1 500 + 15(n − 1).

Dân số của năm 2030 tức n = 11 thì u11 = 1 500 + 15 . (11 − 1) = 1 650 (nghìn người)

Vậy ước tính dân số của thành phố năm 2030 là 1650 nghìn người hay 1,65 triệu người.

Bài 11: Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau:

a) 1, 3, 9, ...;

b) 3, 13, 127, ….

Hướng dẫn giải

a) Ta thấy: 3 : 1 = 3, 9 : 3 = 3

Suy ra công bội q = 3

Số hạng tổng quát của cấp số nhân là: un = 3n–1.

Số hạng thứ 5: u5 = 35–1 = 81.

Số hạng thứ 100: u100 = 3100–1 = 399.

b) Ta thấy: Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức

Suy ra cấp số nhân có công bội q = 19.

Số hạng tổng quát của cấp số nhân là: un = 3.Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức.

Số hạng thứ 5: u5 =3.Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức= 12187.

Số hạng thứ 100:

u100 =Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức

Bài 12: Viết năm số hạng đầu của dãy số (un) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng un = u1 . qn–1.

a) un = 4n;

b) un = 3n;

c) u1 = 2, un = nun–1.

Hướng dẫn giải

a) Năm số hạng đầu của dãy là: 4, 8, 12, 16, 20

Ta có: 8 : 4 = 2 ≠ 12 : 8 = 32nên (un) không phải là cấp số nhân.

b) Năm số hạng đầu của dãy là: 3; 9; 27; 81; 243

Ta có: unun1 = 3n3n1 = 3 với mọi n ≥ 2

Suy ra dãy số là cấp số nhân với u1 = 3 và công bội q = 3.

Số hạng tổng quát: un = 3 . 3n–1.

c) Năm số hạng đầu của dãy là: 2; 4; 12; 48; 240

Ta có: 4 : 2 = 2 ≠ 12 : 4 = 3 nên (un) không phải là cấp số nhân.

Bài 13: Một cấp số nhân có số hạng thứ 6 bằng 10 240 và số hạng thứ 3 bằng 160. Tìm số hạng thứ 50 của cấp số nhân này.

Hướng dẫn giải

Giả sử u1 là số hạng đầu và q là công bội của cấp số nhân đó. Ta có:

u6 = u1 . q5 = 10 240 (1)

u3 = u1 . q2 = 160 (2)

Lấy (1) chia vế theo vế (2) ta được: q3 = 64. Suy ra q = 4.

Với q = 4, ta tính được u­1 = 10.

Suy ra công thức số hạng tổng quát của cấp số nhân là: un = 10 . 4n–1

Vậy số hạng thứ 50 của cấp số nhân này là u50 = 10 . 450–1 = 10 . 449.

Bài 14: Một cấp số nhân có số hạng đầu bằng 4 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 131 068?

Hướng dẫn giải

Số hạng tổng quát của cấp số nhân là: un = 4 . 2n–1.

Gọi n là số các số hạng cần lấy tổng, ta có

131 068 = Sn = Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức = 4 . 2n – 4

Suy ra: 2n = 32768 = 215, do đó n = 15.

Vậy ta phải lấy 15 số hạng đầu của cấp số nhân.

Học tốt Toán 11 Chương 2

Các bài học để học tốt Tổng hợp lý thuyết Toán 11 Chương 2 Toán lớp 11 hay khác:

12 Bài tập trắc nghiệm Toán 11 Kết nối tri thức Chương 2 (có đáp án)

Với 12 bài tập trắc nghiệm tổng hợp Toán 11 Chương 2 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 11.

12 Bài tập trắc nghiệm Toán 11 Kết nối tri thức Chương 2 (có đáp án)

Nội dung đang được cập nhật ...

Xem thêm bài tập trắc nghiệm Toán lớp 11 Kết nối tri thức có đáp án hay khác: