Toán 8 Cánh diều Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

Giải Toán 8 | No tags

Mục lục

Với giải bài tập Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử sách Cánh diều hay nhất, chi tiết giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 Bài 4.

Giải Toán 8 Cánh diều Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

Video Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cô Vũ Chuyên (Giáo viên VietJack)

Bài giảng: Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cô Ngô Vân (Giáo viên VietJack)

Giải Toán 8 trang 24

Khởi động trang 24 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Khởi động trang 24 Toán 8 Tập 1: Làm thế nào để biến đổi được đa thức 3x2 – 5x dưới dạng tích của hai đa thức?

Khởi động trang 24 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Lời giải:

Để biến đổi được đa thức 3x2 – 5x dưới dạng tích của hai đa thức, ta áp dụng tính chất phân phối của phép nhân đối với phép cộng.

Ta biến đổi như sau: 3x2 – 5x = x(3x – 5).

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Hoạt động 1 trang 24 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Hoạt động 1 trang 24 Toán 8 Tập 1: Viết đa thức 6x2 – 10x thành tích của hai đa thức bậc nhất.

Lời giải:

Đa thức 6x2 – 10x thành tích của hai đa thức bậc nhất như sau:

6x2 – 10x = 2x(3x – 5).

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Hoạt động 2 trang 25 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Hoạt động 2 trang 25 Toán 8 Tập 1: Viết mỗi đa thức sau dưới dạng tích của hai đa thức:

a) x2 – y2;

b) x3 – y3;

c) x3 + y3.

Lời giải:

a) x2 – y2 = (x + y)(x – y);

b) x3 – y3 = (x – y)(x2 + xy + y2);

c) x3 + y3 = (x + y)(x2 – xy + y2).

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Luyện tập 1 trang 25 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Luyện tập 1 trang 25 Toán 8 Tập 1: Phân tích mỗi đa thức sau thành nhân tử:

a) (x + 2y)2 – (2x – y)2;

b) 125 + y3;

c) 27x3 – y3.

Lời giải:

a) (x + 2y)2 – (2x – y)2 = [(x + 2y) + (2x – y)] [(x + 2y) – (2x – y)]

= (x + 2y + 2x – y)(x + 2y – 2x + y) = (3x + y)(3y – x);

b) 125 + y3 = 53 + y3 = (y + 5)(y2 – 5y + 52);

c) 27x3 – y3 = (3x)3 – y3 = (3x – y)[(3x)2 – 3xy + y2]

= (3x – y)(9x2 – 3xy + y2).

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Hoạt động 3 trang 25 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Hoạt động 3 trang 25 Toán 8 Tập 1: Cho đa thức x2 – 2xy + y2 + x – y.

a) Nhóm ba số hạng đầu và sử dụng hằng đẳng thức để viết nhóm đó thành tích.

b) Phân tích đa thức trên thành nhân tử.

Lời giải:

Cho đa thức x2 – 2xy + y2 + x – y.

a) Nhóm ba số hạng đầu và sử dụng hằng đẳng thức để viết nhóm đó thành tích, ta được:

x2 – 2xy + y2 + x – y

= (x2 – 2xy + y2) + (x – y) (nhóm ba số hạng đầu, hai số hạng cuối thành nhóm)

= (x – y)2 + (x – y) (dùng hằng đẳng thức để viết nhóm thứ nhất thành tích)

= (x – y)(x – y + 1) (đặt nhân tử chung ở hai nhóm ra ngoài để viết thành tích)

b) Đa thức trên được phân tích thành nhân tử như sau:

x2 – 2xy + y2 + x – y = (x – y)(x – y + 1).

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Luyện tập 2 trang 26 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Luyện tập 2 trang 26 Toán 8 Tập 1: Phân tích mỗi đa thức sau thành nhân tử:

a) 3x2 – 6xy + 3y2 – 5x + 5y;

b) 2x2y + 4xy2 + 2y3 – 8y.

Lời giải:

a) 3x2 – 6xy + 3y2 – 5x + 5y

= 3(x2 – 2xy + y2) – (5x – 5y)

= 3(x – y)2 – 5(x – y) = (x – y)[3(x – y) – 5]

= (x – y)(3x – 3y) – 5)

= (x – y)(3x – 3y – 5)

b) 2x2y + 4xy2 + 2y3 – 8y

= 2y(x2 + 2xy + y2 – 4)

= 2y[(x + y)2 – 22]

= 2y(x + y + 2)(x + y – 2).

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Bài 1 trang 26 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Bài 1 trang 26 Toán 8 Tập 1: Phân tích mỗi đa thức sau thành nhân tử:

a) 4x2 – 12xy + 9y2;

b) x3 + 6x2 + 12x + 8;

c) 8y3 – 12y2 + 6y – 1;

d) (2x + y)2 – 4y2;

e) 27y3 + 8;

g) 64 – 125x3.

Lời giải:

a) 4x2 – 12xy + 9y2 = (2x)2 – 2 . 2x . 3y + (3y)2 = (2x – 3y)2;

b) x3 + 6x2 + 12x + 8 = x3 + 3 . x2 . 2 + 3 . x . 22 + 23 = (x + 3)3;

c) 8y3 – 12y2 + 6y – 1 = (2y)3 – 3 . (2y)2 . 1 + 3 . 2y . 1 – 13 = (2y – 1)3;

d) (2x + y)2 – 4y2 = (2x + y + 4y)(2x + y – 4y) = (2x + 5y)(2x – 3y);

e) 27y3 + 8 = (3y)3 + 23 = (3y + 2)[(3y)2 – 3y . 2 + 22]

= (3y + 2)(9y2 – 6y + 4);

g) 64 – 125x3 = 43 – (5x)3 = (4 + 5x)[42 + 4 . 5x + (5x)2]

= (4 + 5x)(16 + 20x + 25x2).

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Bài 2 trang 27 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Bài 2 trang 27 Toán 8 Tập 1: Phân tích mỗi đa thức sau thành nhân tử:

a) x2 – 25 + 4xy + 4y2;

b) x3 – y3 + x2y – xy2;

c) x4 – y4 + x3y – xy3.

Lời giải:

a) x2 – 25 + 4xy + 4y2 = (x2 + 4xy + 4y2) – 25

= (x + 2y)2 – 52 = (x + 2y + 5)(x + 2y – 5);

b) x3 – y3 + x2y – xy2 = (x3 + x2y) – (y3 + xy2)

= (x3 + x2y) – (y3 + xy2) = x2(x + y) – y2(x + y)

= (x + y)(x2 – y2) = (x + y)(x + y)(x – y) = (x + y)2(x – y);

c) x4 – y4 + x3y – xy3 = (x4 + x3y) – (y4 + xy3)

= x3(x + y) – y3(x + y) = (x + y)(x3 – y3)

= (x + y)(x – y)(x2 + xy + y2).

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Bài 3 trang 27 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Bài 3 trang 27 Toán 8 Tập 1: Tính giá trị của mỗi biểu thức sau:

a) A = x4 – 2x2y – x2 + y2 + y biết x2 – y = 6;

b) B = x2y2 + 2xyz + z2 biết xy + z = 0.

Lời giải:

a) Ta có A = x4 – 2x2y – x2 + y2 + y

= (x4 – 2x2y + y2) – (x2 – y)

= [(x2)2 – 2x2y + y2] – (x2 – y)

= (x2 – y)2 – (x2 – y).

Giá trị của mỗi biểu thức A với x2 – y = 6 là:

A = (x2 – y)2 – (x2 – y) = 62 – 6 = 36 – 6 = 30.

b) B = x2y2 + 2xyz + z2 = (xy)2 + 2xyz + z2 = (xy + z)2.

Giá trị của mỗi biểu thức tại xy + z = 0 là: B = (xy + z)2 = 02 = 0.

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Bài 4 trang 27 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Bài 4 trang 27 Toán 8 Tập 1: Chứng tỏ rằng:

a) M = 322 023 – 322 021 chia hết cho 31;

b) N = 76 + 2 . 73 + 82022 +1 chia hết cho 8.

Lời giải:

a) Ta có M = 322 023 – 322 021 = 322 . 322 021 – 322 021

= (322 – 1) . 322 021 = (1024 – 1) . 322 021 = 1023 . 322 021

Vì 1023 ⋮ 31 nên (1023 . 322 021) ⋮ 31.

Do đó M = 322 023 – 322 021 chia hết cho 31;

b) Ta có N = 76 + 2 . 73 + 82022 +1 = (73)2 + 2 . 73 +1 + 82022

= (73 + 1)2 + 82022 = 3442 + 82022.

Vì 344 ⋮ 8; 8 ⋮ 8 nên 3442 ⋮ 8; 82022 ⋮ 8.

Do đó (3442 + 82022) ⋮ 8

Vậy N = 76 + 2 . 73 + 82022 +1 chia hết cho 8.

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Bài 5 trang 27 Toán 8 Tập 1 Cánh diều

Giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Bài 5 trang 27 Toán 8 Tập 1: Bác Hoa gửi tiết kiệm a đồng kì hạn 12 tháng ở một ngân hàng với lãi suất x%/năm.

a) Viết công thức tính số tiền bác Hoa có được sau 12 tháng dưới dạng tích, biết bác Hoa không rút tiền ra khỏi ngân hàng trong 12 tháng đó.

b) Sau kì hạn 12 tháng, tiền lãi của kì hạn đó được cộng vào tiền vốn, rồi bác Hoa tiếp tục đem gửi cho kì hạn 12 tháng tiếp theo. Viết công thức tính tổng số tiền mà bác Hoa nhận được sau khi gửi 24 tháng trên dưới dạng tích, biết trong 24 tháng đó, lãi suất ngân hàng không thay đổi và bác Hoa không rút tiền ra khỏi ngân hàng.

Lời giải:

a) Số tiền lãi bác Hoa nhận được sau 12 tháng là: a . r% (đồng)

Do đó, công thức tính số tiền bác Hoa có được sau 12 tháng là:

a + a . r% = a . (1 + r%) (đồng).

b) Sau kì hạn 12 tháng, bác Hoa tiếp tục đem gửi cho kì hạn 12 tháng tiếp theo, tức là bác Hoa gửi tiếp 12 tháng với số tiền gốc là a . (1 + r%) (đồng).

Số tiền lãi bác Hoa nhận được sau khi gửi 24 tháng là:

a . (1 + r%) . r% (đồng).

Do đó, công thức tính tổng số tiền mà bác Hoa nhận được sau khi gửi 24 tháng là:

a . (1 + r%) + a . (1 + r%) . r% = a(1 + r%)(1 + r%) = a(1 + r%)2 (đồng).

Lời giải Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử hay, chi tiết khác:

Sách bài tập Toán 8 Cánh diều Bài 4: Luyện tập hằng đẳng thức vào phân tích đa thức thành nhân tử

Với giải sách bài tập Toán 8 Bài 4: Luyện tập hằng đẳng thức vào phân tích đa thức thành nhân tử sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 8 Bài 4.

Giải SBT Toán 8 Bài 4: Luyện tập hằng đẳng thức vào phân tích đa thức thành nhân tử - Cánh diều

Giải SBT Toán 8 trang 17 Tập 1

Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử (Lý thuyết Toán lớp 8) | Cánh diều

Với tóm tắt lý thuyết Toán lớp 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.

Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử (Lý thuyết Toán lớp 8) | Cánh diều

Lý thuyết Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

1. Phân tích đa thức thành nhân tử

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích những đa thức.

Ví dụ: 3x2 + 3x = 3x(x + 1).

2. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

2.1. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng trực tiếp hằng đẳng thức

Sử dụng các hằng đẳng thức để phân tích đa thức

A2 – B2 = (A – B)(A + B)

A3 + B3 = (A + B)(A2 – AB + B2);

A3 – B3 = (A – B)(A2 + AB + B2).

Ví dụ: 4 – 9x2 = 22 – (3x)2 = (2 – 3x)(2 + 3x)

8 – x3 = 23 – x3 = (2 – x)(22 + 2 . x + x2)

= (2 + x)(4 + 2x + x2)

2.2. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng đằng đẳng thức thông qua nhóm hạng tử và đặt nhân tử chung

Để phân tích đa thức thành nhân tử ta làm như sau

- Nhóm các hạng tử thành nhóm

- Dùng hằng đẳng thức, đặt nhân tử chúng để viết nhóm thành tích.

Ví dụ: x2 + 2xy + y2 – x – y

= (x2 + 2xy + y2) – (x + y)

= (x + y)2 – (x + y)

= (x + y)(x + y – 1)

Bài tập Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

Bài 1. Phân tích mỗi đa thức sau thành nhân tử:

a) 8x3 – 64 ;

b) x2 – 25 – 4xy + 4y2.

Hướng dẫn giải

a) 8x3 – 64 = (2x)3 – 43 = (2x – 4)(4x2 + 8x + 16).

b) x2 – 25 – 4xy + 4y2 = (x2 – 4xy + 4y2) – 25

= (x – 2y)2 – 25 = (x – 2y)2 – 52

= (x – 2y – 5)(x – 2y + 5).

Bài 2. Tính giá trị biểu thức sau:

A = x2y2 + 2xyz + z2 biết xy + z = 0.

Hướng dẫn giải

A = x2y2 + 2xyz + z2

= (xy)2 + 2xyz + z2 = (xy + z)2.

Thay xy + z = 0 vào biểu thức A ta được:

A = 02 = 0.

Vậy khi xy + z = 0 giá trị của biểu thức A bằng 0.

Vậy với xy + z = 0 thì A = 0.

Bài 3. Tìm x, biết:

a) x2 – 4x = 0;

b) (x – 3)2 + 3 – x = 0.

Hướng dẫn giải

a) x2 – 4x = 0

x . x – 4 . x = 0

x . (x – 4) = 0

x = 0 hoặc x – 4 = 0

x = 0 hoặc x = 4

Vậy x {0; 4}.

b) (x – 3)2 + 3 – x = 0

(x – 3)(x – 3) + ( –x + 3) = 0

(x – 3)(x – 3) – (x – 3) . 1 = 0

(x – 3)(x – 3 – 1) = 0

(x – 3)(x – 4) = 0

x – 3 = 0 hoặc x – 4 = 0

x = 3 hoặc x = 4

Vậy x {3; 4}.

Học tốt Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

Các bài học để học tốt Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử Toán lớp 8 hay khác:

15 Bài tập Luyện tập hằng đẳng thức vào phân tích đa thức thành nhân tử (có đáp án) - Cánh diều Trắc nghiệm Toán 8

Với 15 bài tập trắc nghiệm Luyện tập hằng đẳng thức vào phân tích đa thức thành nhân tử Toán lớp 8 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Cánh diều sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 8.

15 Bài tập Luyện tập hằng đẳng thức vào phân tích đa thức thành nhân tử (có đáp án) - Cánh diều Trắc nghiệm Toán 8

Câu 1. Phân tích đa thức thành nhân tử x2 + 6x + 9, ta được

A. (x + 3)(x - 3)

B. (x - 1)(x + 9)

C. (x + 3)2

D. (x + 6)(x - 3)

Câu 2. Tính giá trị biểu thức P = x3 - 3x2 + 3x với x = 1001.

A. 10003 + 1

B. 10003 – 1

C. 10003

D. 10013

Câu 3. Tính nhanh biểu thức 372 - 132.

A. 1200

B. 800

C. 1500

D. 1800

Câu 4. Phân tích đa thức x22xy+y281 thành nhân tử:

A. (x - y - 3)(x - y + 3)

B. (x - y - 9)(x - y + 9)

C. (x + y - 3)(x + y + 3)

D. (x + y - 9)(x + y - 9)

Câu 5. Giá trị thỏa mãn biểu thức 2x2 - 4x + 2 = 0 là

A. 1

B. – 1

C. 2

D. 4

Câu 6. Có bao nhiêu giá trị của x thỏa mãn 2x524x22=0?

A. 2

B. 1

C. 0

D. 4

Câu 7. Đa thức 4b2c2c2+b2a22 được phân tích thành

A. b+c+ab+caa+bcab+c

B. b+c+abcaa+bcab+c

C. b+c+ab+caa+bc2

D. b+c+ab+caa+bcabc

Câu 8. Tính nhanh giá trị của biểu thức x2+2x+1y2 tại x = 94,5 và y = 4,5.

A. 8900

B. 9000

C. 9050

D. 9100

Câu 9. Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

A. 7.

B. 8.

C. 9.

D. 10.

Câu 10. Giá trị của x thỏa mãn 5x2 - 10x + 5 = 0 là

A. x = 1

B. x = – 1

C. x = 2

D. x = 5

Câu 11. Cho |x| < 3 và biểu thức A = x4+3x327x81. Khẳng định nào sau đây đúng?

A. A > 1

B. A > 0

C. A < 0

D. A ≥ 1

Câu 12. Đa thức x6 - y6 được phân tích thành

A. x+y2x2xy+y2x2+xy+y2

B. x+y2x2xy+y2x2+xy+y2

C. x+y2x2xy+y2x2+xy+y2

D. x+y2x2+2xy+y2yxx2+xy+y2

Câu 13. Cho x = 20 – y và biểu thức B =  x3 + 3x2y + 3xy2 + y3 + x2 + 2xy + y2. Khi đó khẳng định nào sau đây là đúng?

A. B < 8300

B. B > 8500

C. B < 0

D. B > 8300

Câu 14. Chọn câu sai.

A. x26x+9=x32

B. x24+2xy+4y2=x4+2y2

C. x24+2xy+4y2=x2+2y2

D. 4x24xy+y2=(2xy)2

Câu 15. Với a3 + b3 + c3 = 3abc thì

A. a = b = c

B. a + b + c = 1

C. a = b = c hoặc a + b + c = 0

D. a = b = c hoặc a + b + c = 1

Xem thêm bài tập trắc nghiệm Toán lớp 8 Cánh diều có đáp án hay khác: