Giải Toán 12 Bài 3: Tích phân - Cánh diều
Bài 7 trang 27 Toán 12 Tập 2: a) Cho một vật chuyển động với vận tốc y = v(t) (m/s). Cho 0 < a < b và v(t) > 0 với mọi t ∈ [a; b]. Hãy giải thích vì sao biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b (a, b tính theo giây).
b) Áp dụng công thức ở câu a) để giải bài toán sau: Một vật chuyển động với vận tốc v(t) = 2 – sin t (m/s). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm t = 0 (giây) đến thời điểm t = (giây).
Lời giải:
a) Gọi s(t) là quãng đường đi được của chuyển động.
Ta có vận tốc là đạo của quãng đường: s'(t) = v(t). Do đó hàm số s(t) là một nguyên hàm của hàm số v(t). Khi đó ta có .
Vậy biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b.
b) Quãng đường vật đó di chuyển trong khoảng thời gian từ thời điểm t = 0 (giây) đến thời điểm t = (giây) là:
≈ 3 (m).
Lời giải bài tập Toán 12 Bài 3: Tích phân hay, chi tiết khác: