Giải Toán 11 Bài 3: Hàm số lượng giác và đồ thị - Cánh diều
Luyện tập 1 trang 23 Toán 11 Tập 1:
a) Chứng tỏ rằng hàm số g(x) = x3 là hàm số lẻ.
b) Cho ví dụ về hàm số không là hàm số chẵn và cũng không là hàm số lẻ.
Lời giải:
a) Xét hàm số g(x) = x3 có tập xác định D = ℝ.
∀x ∈ ℝ thì ‒x ∈ ℝ, ta có: g(‒x) = (‒x)3 = ‒x3 = ‒g(x).
Do đó hàm số g(x) = x3 là hàm số lẻ.
b) Ví dụ về hàm số không là hàm số chẵn và cũng không là hàm số lẻ:
f(x) = x2 + x; g(x) = 2x3 – 3x2; …
Lời giải bài tập Toán 11 Bài 3: Hàm số lượng giác và đồ thị hay, chi tiết khác: