Giải Toán 8 | No tags
Khởi động trang 113 Toán 8 Tập 1: Hoạ tiết trên vải ở Hình 55 gợi lên hình ảnh của hình thoi.
Hình thoi có những tính chất gì? Có những dấu hiệu nào để nhận biết một tứ giác là hình thoi?
Lời giải:
Sau bài học này chúng ta sẽ giải quyết câu hỏi trên như sau:
‒ Trong một hình thoi:
+ Bốn cạnh bằng nhau;
+ Các cạnh đối song song.
+ Các góc đối bằng nhau.
+ Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
+ Hai đường chéo là các đường phân giác của các góc ở đỉnh.
‒ Dấu hiệu nhận biết hình thoi:
+ Hình bình hành có hai cạnh kề nhau là hình thoi.
+ Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
+ Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Hoạt động 1 trang 113 Toán 8 Tập 1: So sánh độ dài các cạnh của tứ giác ABCD ở Hình 56.
Lời giải:
Xét tứ giác ABCD ở Hình 56 ta có: AB = BC = CD = DA.
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Hoạt động 2 trang 113, 114 Toán 8 Tập 1: Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O (Hình 58).
a) Hình thoi ABCD có là hình bình hành hay không?
b) Hai đường chéo AC và BD có vuông góc với nhau hay không?
c) Hai tam giác ABC và ADC có bằng nhau hay không? Tia AC có phải là tia phân giác của hay không?
Lời giải:
a) Do ABCD là hình thoi nên AB = BC = CD = DA.
Xét tứ giác ABCD có: AB = CD, AD = BC nên ABCD là hình bình hành.
b) Do ABCD là hình bình hành nên OB = OD.
Xét ΔOAD và ΔOAB có:
OA là cạnh chung;
AD = AB (chứng minh trên);
OD = OB (chứng minh trên).
Do đó ΔOAD = ΔOAB (c.c.c)
Suy ra (hai góc tương ứng)
Mà . (hai góc kề bù)
Do đó hay AC ⊥ BD tại O.
c) Xét ΔABC và ΔADC có:
AC là cạnh chung;
AB = AD (chứng minh câu a);
BC = DC (chứng minh câu a)
Do đó ΔABC = ΔADC (c.c.c)
Suy ra (hai góc tương ứng)
Nên AC là tia phân giác của .
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Luyện tập 1 trang 114 Toán 8 Tập 1: Cho hình thoi ABCD có . Chứng minh tam giác ABD là tam giác đều.
Lời giải:
Do ABCD là hình thoi nên AB = AD
Tam giác ABD có AB = AD nên là tam giác cân tại A.
Do ABCD là hình thoi nên BD là tia phân giác của góc ABC.
Suy ra .
Xét ΔABD cân có nên là tam giác đều.
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Hoạt động 3 trang 114 Toán 8 Tập 1: a) Cho hình bình hành ABCD có hai cạnh kề AB và BC bằng nhau. ABCD có phải là hình thoi hay không?
b) Cho hình bình hành ABCD có hai đường chéo AC và BD vuông góc với nhau (Hình 60).
• Đường thẳng AC có phải là đường trung trực của đoạn thẳng BD hay không?
• ABCD có phải là hình thoi hay không?
Lời giải:
a) Do ABCD là hình bình hành nên AB = CD và AD = BC.
Mà AB = BC nên AB = BC = CD = DA.
Tứ giác ABCD có bốn cạnh bằng nhau nên là hình thoi.
b) • Do ABCD là hình bình hành nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
Do đó AC ⊥ BD tại trung điểm O của đoạn thẳng BD.
Suy ra AC là đường trung trực của đoạn thẳng BD.
• Vì AC là đường trung trực của đoạn thẳng BD nên AD = AB.
Theo kết quả câu a, hình bình hành ABCD có hai cạnh kề AD và AB bằng nhau nên là hình thoi.
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Luyện tập 2 trang 115 Toán 8 Tập 1: Cho tam giác ABC cân tại A có M là trung điểm BC. Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh tứ giác ABNC là hình thoi.
Lời giải:
Do MN = MA nên M là trung điểm của AN.
Xét tứ giác ABNC có hai đường chéo AN và BC cắt nhau tại trung điểm M của mỗi đường
Do đó ABNC là hình bình hành.
Mặt khác, ΔABC cân tại A có AM là đường trung tuyến đồng thời là đường cao
Do đó AM ⊥ BC hay AN ⊥ BC.
Suy ra hình bình hành ABNC có hai đường chéo vuông góc với nhau nên là hình thoi.
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Bài 1 trang 115 Toán 8 Tập 1: Cho hình bình hành ABCD có tia AC là tia phân giác của góc DAB. Chứng minh ABCD là hình thoi .
Lời giải:
Do AC là tia phân giác của góc DAB nên .
Mặt khác do ABCD là hình bình hành nên AB // CD
Suy ra (so le trong).
Do đó
Xét ΔDAC có nên ΔDAC cân tại D .
Suy ra DA = DC.
Hình bình hành ABCD có hai cạnh kề DA và DC bằng nhau nên là hình thoi.
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Bài 2 trang 115 Toán 8 Tập 1: Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:
AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
Lời giải:
Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.
Do đó AC = 2OA, BD = 2OB.
Ta có: AC2 + BD2 = (2OA)2 + (2OB)2 = 4OA2 + 4OB2 = 4(OA2 + OB2).
Xét ΔOAB vuông tại O, theo định lí Pythagore ta có:
AB2 = OA2 + OB2
Suy ra AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Bài 3 trang 115 Toán 8 Tập 1: Cho hình thoi ABCD có . Tính số đo mỗi góc của hình thoi ABCD.
Lời giải:
Vì ABCD là hình thoi nên BD là phân giác của
Do đó .
Suy ra .
Do ABCD là hình thoi nên AB // CD, do đó
Suy ra .
Do đó .
Vậy và .
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Bài 4 trang 115 Toán 8 Tập 1: Hình 62 mô tả một lưới mắt cáo có dạng hình thoi với độ dài của hai đường chéo là 45 mm và 90 mm. Độ dài cạnh của ô lưới mắt cáo đó là bao nhiêu milimét (Làm tròn kết quả đến hàng đơn vị)?
Lời giải:
Giả sử một lưới mắt cáo được mô tả bởi hình thoi ABCD như hình vẽ trên.
Khi đó AC = 90 mm, BD = 45 mm.
Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.
Suy ra ; .
Xét ΔOAB vuông tại O, theo định lí Pythagore ta có:
AB2 = OA2 + OB2 = 452 + 22,52 = 2 025 + 506,25 = 2531,25
Suy ra .
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Bài 5 trang 115 Toán 8 Tập 1: Một viên gạch trang trí có dạng hình thoi với độ dài cạnh là 40 cm và số đo một góc là 60° (Hình 63). Diện tích của viên gạch đó là bao nhiêu centimét vuông (làm tròn kết quả đến hàng phần trăm)?
Lời giải:
Giả sử viên gạch trang trí được mô tả bởi hình thoi ABCD như hình vẽ trên với
• Tam giác BCD có BC = CD (do ABCD là hình thoi) nên là tam giác cân tại C.
Lại có nên ΔBCD là tam giác đều.
Do đó BC = CD = BD = 40 cm.
• Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.
Suy ra .
Xét ΔOBC vuông tại O, theo định lí Pythagore ta có:
BC2 = OB2 + OC2
Do đó OC2 = BC2 – OB2 = 402 – 202 = 1 600 – 400 = 1 200.
Suy ra
Mà O là trung điểm của AC nên AC = 2OC ≈ 69,28 (cm).
• Diện tích của viên gạch có dạng hình thoi đó là
.
Lời giải bài tập Toán 8 Bài 6: Hình thoi hay, chi tiết khác:
Với tóm tắt lý thuyết Toán lớp 8 Bài 6: Hình thoi sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.
1. Định nghĩa
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Ví dụ: Cho hình vẽ, tứ giác MNPQ có phải là hình thoi không? Vì sao?
Hướng dẫn giải
Từ hình vẽ, ta có MN = NP = PQ = QM (vì cùng bằng 2,5 cm) nên tứ giác MNPQ là hình thoi.
2. Tính chất
Trong một hình thoi:
- Các cạnh đối song song;
- Các góc đối bằng nhau;
- Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường;
- Hai đường chéo là các đường phân giác của các góc ở đỉnh.
Ví dụ: Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O, AC = 3 cm, BD = 4 cm. Tính độ dài của OA, OB, AB.
Hướng dẫn giải
Do ABCD là hình thoi nên O là trung điểm của hai đường chéo AC, BD.
Suy ra:
Ta có AC ⊥ BD (vì ABCD là hình thoi) nên tam giác OAB vuông tại O.
Áp dụng định lý Pythagore, ta có:
AB2 = OA2 + OB2
Do đó AB2 = 1,52 + 22 = 6,25 hay AB = 2,5 (cm).
Vậy OA = 1,5 cm; OB = 2 cm; AB = 2,5 cm.
3. Dấu hiệu nhận biết
Ta có dấu hiệu nhận biết:
- Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
- Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
Ví dụ: Cho tam giác ABC vuông tại A. Các điểm M, N lần lượt thuộc tia đối của tia AB, AC sao cho AM = AB, AN = AC. Chứng minh tứ giác BCMN là hình thoi.
Hướng dẫn giải
Tứ giác BCMN có A là trung điểm của hai đường chéo BM và CN nên BCMN là hình bình hành.
Do tam giác ABC vuông tại A nên hay BM ⊥ CD.
Vậy hình BCMN có hai đường chéo BM và CN vuông góc với nhau nên BCMN là hình thoi.
Bài 1. Cho hình thoi có độ dài hai đường chéo là 24 cm và 10 cm. Tính độ dài cạnh hình thoi.
Hướng dẫn giải
Giả sử hình thoi có hai đường chéo cắt nhau tại H và AC = 10 cm, BD = 24 cm.
Do ABCD là hình thoi nên:
AC ⊥ BD
Xét tam giác AHB vuông tại H:
AB2 = AH2 + HB2 = 52 + 122 = 169
Do đó AB = 13 cm.
Bài 2. Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB, M’ là điểm đối xứng với M qua D. Tứ giác AMBM’ là hình gì?
Hướng dẫn giải
Vì M’ đối xứng M qua D nên DM = DM’
M là trung điểm BC
D là trung điểm AB
Suy ra MD là đường trung bình của ΔABC.
Suy ra MD // AC.
Mặt khác ΔABC vuông ở A nên AB ⊥ AC.
Do đó AB ⊥ DM hay AB ⊥ MM’.
Vì D là trung điểm của AB và MM’ nên tứ giác AMBM’ là hình bình hành.
Mà AB ⊥ MM’ nên AMBM’ là hình thoi.
Vậy AMBM’ là hình thoi.
Các bài học để học tốt Hình thoi Toán lớp 8 hay khác:
Với 15 bài tập trắc nghiệm Hình thoi Toán lớp 8 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Cánh diều sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 8.
Nội dung đang được cập nhật ...
Xem thêm bài tập trắc nghiệm Toán lớp 8 Cánh diều có đáp án hay khác: