Giải Toán 12 Bài 1: Phương trình mặt phẳng - Cánh diều
Bài 9 trang 64 Toán 12 Tập 2:
a) Cho hai mặt phẳng (P1): x + 2y + 3z + 4 = 0, (P2): x + y – z + 5 = 0. Chứng minh rằng (P1) ⊥ (P2).
b) Cho mặt phẳng (P): x – 2y – 2z + 1 = 0 và điểm M(1; 1; – 6). Tính khoảng cách từ điểm M đến mặt phẳng (P).
Lời giải:
a) Hai mặt phẳng (P1) và (P2) có vectơ pháp tuyến lần lượt là và .
Vì = 1 ∙ 1 + 2 ∙ 1 + 3 ∙ (– 1) = 0 nên . Vậy (P1) ⊥ (P2).
b) Khoảng cách từ điểm M đến mặt phẳng (P) là:
d(M, (P)) =
Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay, chi tiết khác: