Luyện tập 12 trang 61 Toán 12 Tập 2 Cánh diều

Giải Toán 12 | No tags

Mục lục

Giải Toán 12 Bài 1: Phương trình mặt phẳng - Cánh diều

Luyện tập 12 trang 61 Toán 12 Tập 2: Cho mặt phẳng (P1): 6x – 8y – 3 = 0 và mặt phẳng (P2): 3x – 4y + 2 = 0.

a) Chứng minh rằng (P1) // (P2).

b) Tính khoảng cách giữa hai mặt phẳng song song (P1) và (P2).

Lời giải:

a) Ta có n1=6;8;0, n2=3;4;0 lần lượt là hai vectơ pháp tuyến của các mặt phẳng (P1), (P2). Do n1=2n2, D1 ≠ 2D2 (vì D1 = – 3, D2 = 2) nên (P1) // (P2).

b) Chọn điểm M 12;0;0 ∈ (P1). Suy ra khoảng cách từ điểm M đến mặt phẳng (P2) là: dM,P2=312+232+42=710.

Do khoảng cách giữa hai mặt phẳng song song (P1), (P2) bằng d(M, (P2)) nên khoảng cách giữa hai mặt phẳng song song (P1), (P2) bằng 710

Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay, chi tiết khác: