Toán 11 Chân trời sáng tạo Bài 2: Các quy tắc tính đạo hàm

Giải Toán 11 | No tags

Mục lục

Với giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 Bài 2.

Giải Toán 11 Chân trời sáng tạo Bài 2: Các quy tắc tính đạo hàm

Giải Toán 11 trang 42

Hoạt động khởi động trang 42 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Hoạt động khởi động trang 42 Toán 11 Tập 2: Giả sử hàm số f(x) và g(x) lần lượt có đạo hàm tại x0 là f'(x0) và g'(x0). Làm thế nào để tính đạo hàm của các hàm số là tổng, hiệu, tích hoặc thương của f(x) và g(x) tại x0?

Lời giải:

Để tính đạo hàm của các hàm số là tổng, hiệu, tích hoặc thương của f(x) và g(x) tại x0 thì ta tìm giới hạn của tổng, hiệu, tích hoặc thương của f(x) và g(x) tại x0.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Hoạt động khám phá 1 trang 42 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Hoạt động khám phá 1 trang 42 Toán 11 Tập 2:

a) Dùng định nghĩa tính đạo hàm của hàm số y = x tại điểm x = x0.

b) Nhắc lại đạo hàm của các hàm số y = x2; y = x3 đã tìm được ở bài học trước. Từ đó, dự đoán đạo hàm của hàm số y = xn với n ℕ*.

Lời giải:

a) Ta có y'(x0)=limxx0fxfx0xx0=limxx0xx0xx0=1.

Vậy y'(x0) = 1.

b) Có (x2)' = 2x; (x3)' = 3x2;

Dự đoán (xn)' = nxn – 1.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Thực hành 1 trang 43 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Thực hành 1 trang 43 Toán 11 Tập 2: Tính đạo hàm của hàm số y = x10 tại x = −1 và x=23 .

Lời giải:

Ta có y' = (x10)' = 10x9.

Khi đó y'(−1) = 10×(−1)9 = −10;

y'23=10239=102139=80.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Hoạt động khám phá 2 trang 43 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Hoạt động khám phá 2 trang 43 Toán 11 Tập 2: Dùng định nghĩa, tính đạo hàm của hàm số y=x tại điểm x = x0 với x0 > 0.

Lời giải:

Ta có y'x0=limxx0fxfx0xx0=limxx0xx0xx0

=limxx0xx0xx0x+x0=limxx01x+x0=12x0.

Vậy y'x0=12x0.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Thực hành 2 trang 43 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Thực hành 2 trang 43 Toán 11 Tập 2: Viết phương trình tiếp tuyến của đồ thị hàm số y=x tại điểm có hoành độ bằng 4.

Lời giải:

Ta có y'=x'=12x.

Hệ số góc của tiếp tuyến của đồ thị hàm số y=x tại điểm có hoành độ bằng 4 là:

k=y'4=124=14.

Với x = 4 thì y=4=2.

Khi đó phương trình tiếp tuyến của đồ thị hàm số y=x tại điểm có hoành độ bằng 4 là y=14x4+2 hay y=14x+1.

Vậy y=14x+1 là tiếp tuyến cần tìm.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Thực hành 3 trang 43 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Thực hành 3 trang 43 Toán 11 Tập 2: Tìm đạo hàm của các hàm số:

a) y=x4 tại x = 1;

b) y=1x tại x=14.

Lời giải:

a) Ta có y'=x4'=14x34=141x34.

Khi đó y'1=141134=14.

b) Ta có y'=1x'=1x2.

Khi đó y'14=1142=16.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Hoạt động khám phá 3 trang 44 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Hoạt động khám phá 3 trang 44 Toán 11 Tập 2: Cho biết limx0sinxx=1. Dùng định nghĩa tính đạo hàm của hàm số y = sinx.

Lời giải:

y'x0=limxx0fxfx0xx0=limxx0sinxsinx0xx0

=limxx02cosx+x02sinxx02xx0

=limxx02cosx+x02limxx012sinxx02xx02

=2cos2x0212=cosx0 (do limxx0sinxx02xx02=1).

Vậy y' = (sinx)' = cosx.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Thực hành 4 trang 44 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Thực hành 4 trang 44 Toán 11 Tập 2: Tính đạo hàm của hàm số y = tanx tại x=3π4.

Lời giải:

Ta có y' = (tanx)' = 1cos2x.

Vậy y'3π4=1cos23π4=2.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Hoạt động khám phá 4 trang 44 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Hoạt động khám phá 4 trang 44 Toán 11 Tập 2: Cho biết limx0ex1x=1limx0ln1+xx=1. Dùng định nghĩa tính đạo hàm của các hàm số:

a) y = ex;

b) y = lnx.

Lời giải:

a) Có y'x0=limxx0fxfx0xx0=limxx0exex0xx0

=limxx0ex0exx01xx0=ex0 (do limxx0exx01xx0=1).

Vì y'(x0) = ex0 nên y' = (ex)' = ex.

b) Ta có y'x0=limxx0fxfx0xx0=limxx0lnxlnx0xx0

=limxx01x0lnxx0xx01=limxx01x0limxx0ln1+xx01xx01=1x0

(do limxx0ln1+xx01xx01=1.

Do y'(x0) = 1x0nên y' = (lnx)' = 1x.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Thực hành 5 trang 44 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Thực hành 5 trang 44 Toán 11 Tập 2: Tính đạo hàm của các hàm số:

a) y = 9x tại x = 1;

b) y = lnx tại x=13.

Lời giải:

a) Ta có y' = (9x)' = 9x×ln9.

Khi đó y'(1) = 91×ln9 = 9ln9.

b) Ta có y' = (lnx)' = 1x.

Khi đó y'13=113=3.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Hoạt động khám phá 5 trang 45 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Hoạt động khám phá 5 trang 45 Toán 11 Tập 2: Cho f(x) và g(x) là hai hàm số có đạo hàm tại x0. Xét hàm số h(x) = f(x) + g(x).

Ta có hxhx0xx0=fxfx0xx0+gxgx0xx0.

Nên h'x=limxx0hxhx0xx0=limxx0fxfx0xx0+limxx0gxgx0xx0=...+...

Chọn biểu thức thích hợp thay cho chỗ chấm để tìm h'(x0).

Lời giải:

Ta có limxx0fxfx0xx0=f'x0limxx0gxgx0xx0=g'x0 nên h'(x0) = f'(x0) + g'(x0).

Do đó hx=limxx0hxhx0xx0

=limxx0fxfx0xx0+limxx0gxgx0xx0=f'x0+g'x0.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Thực hành 6 trang 46 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Thực hành 6 trang 46 Toán 11 Tập 2: Tính đạo hàm của các hàm số:

a) y = xlog2x;

b) y = x3ex.

Lời giải:

a) y' = (xlog2x)' = (x)'log2x + x(log2x)'

= log2x+x1xln2=log2x+1ln2.

b) y' = (x3ex)' = (x3)'ex + x3(ex)' = 3x2ex + x3ex.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Hoạt động khám phá 6 trang 46 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Hoạt động khám phá 6 trang 46 Toán 11 Tập 2: Cho hàm số u = sinx và hàm số y = u2.

a) Tính y theo x.

b) Tính y'x (đạo hàm của y theo biến x), y'u (đạo hàm của y theo biến u) và u'x (đạo hàm của u theo biến x) rồi so sánh y'x với y'u×u'x.

Lời giải:

a) Ta có y = u2 = (sinx)2 = sin2x.

b) Ta có y'x = (sin2x)' = (sinx×sinx)' = (sinx)'×sinx + sinx×(sinx)'

= cosx×sinx + sinx×cosx = 2sinxcosx = sin2x. (1)

y'u = (u2)' = 2u = 2sinx.

u'x = (sinx)' = cosx.

Có y'u×u'x = 2sinxcosx = sin2x. (2)

Từ (1) và (2), ta có: y'x = y'u×u'x.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Thực hành 7 trang 47 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Thực hành 7 trang 47 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:

a) y = (2x3 + 3)2;

b) y = cos3x;

c) y = log2(x2 + 2).

Lời giải:

a) y' = [(2x3 + 3)2]' = 2(2x3 + 3)(2x3 + 3)' = 12x2(2x3 + 3).

b) y' = (cos3x)' = −sin3x×(3x)' = −3sin3x.

c) y' = [log2(x2 + 2)]' = x2+2'x2+2ln2=2xx2+2ln2.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Hoạt động khám phá 7 trang 47 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Hoạt động khám phá 7 trang 47 Toán 11 Tập 2: Một chuyển động thẳng xác định bởi phương trình s(t) = 2t3 + 4t + 1, trong đó s tính bằng mét và t là thời gian tính bằng giây.

a) Tính vận tốc tức thời v(t) tại thời điểm t.

b) Đạo hàm v'(t) biểu thị tốc độ thay đổi của vận tốc theo thời gian, còn gọi là gia tốc của chuyển động, kí hiệu a(t). Tính gia tốc của chuyển động tại thời điểm t = 2.

Lời giải:

a) Vận tốc tức thời v(t) tại thời điểm t là v(t) = s'(t) = (2t3 + 4t + 1)' = 6t2 + 4.

b) a(t) = v'(t) = (6t2 + 4)' = 12t.

Gia tốc của chuyển động tại thời điểm t = 2 là a(2) = 12×2 = 24 (m/s2).

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Thực hành 8 trang 48 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Thực hành 8 trang 48 Toán 11 Tập 2: Tính đạo hàm cấp hai của các hàm số sau:

a) y = x2 – x;

b) y = cosx.

Lời giải:

a) Có y' = (x2 – x)' = 2x – 1.

Có y" = (2x – 1)' = 2. Vậy y" = 2.

b) Có y' = (cosx)' = −sinx.

y" = (−sinx)' = −cosx. Vậy y" = −cosx.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Vận dụng trang 48 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Vận dụng trang 48 Toán 11 Tập 2: Một hòn sỏi rơi tự do có quãng đường rơi tính theo thời gian t là s(t) = 4,9t2 , trong đó s tính bằng mét và t tính bằng giây. Tính gia tốc rơi của hòn sỏi lúc t = 3.

Lời giải:

Vận tốc của hòn sỏi tại thời điểm t là v(t) = s'(t) = (4,9t2)' = 9,8t.

Gia tốc của hòn sỏi tại thời điểm t là a(t) = v'(t) = (9,8t)' = 9,8.

Gia tốc rơi của hòn sỏi lúc t = 3 là a(3) = 9,8 m/s2.

Vậy gia tốc rơi của hòn sỏi lúc t = 3 là 9,8 m/s2.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Bài 1 trang 48 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Bài 1 trang 48 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:

a) y=2x3x22+4x13;

b) y=2x+3x4;

c) y=x22x+3x1;

d) y=5x.

Lời giải:

a) y'=2x3x22+4x13'

=2x3'x22'+4x'13'=6x2x+4.

b) y'=2x+3x4'=2x+3'x42x+3x4'x42

=2x42x+3x42=2x+8+2x3x42=5x42.

c) y=x22x+3x1=x22x+3'x1x22x+3x1'x12

=2x2x1x22x+3x12=2x24x+2x2+2x3x12

=x22x1x12.

d) y'=5x'=5x'25x=525x.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Bài 2 trang 49 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Bài 2 trang 49 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:

a) y = sin3x;

b) y = cos32x;

c) y = tan2x;

d) y = cot(4 – x2).

Lời giải:

a) y' = (sin3x)' = cos3x×(3x)' = 3cos3x.

b) y' = (cos32x)' = 3cos22x(cos2x)' = −6cos22xsin2x.

c) y' = (tan2x)' = 2tanx×(tanx)'

= 2tanx1cos2x = 2tanx(1 + tan2x).

d) y' = [cot(4 – x2)]' = 4x2'sin24x2=2xsin24x2.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Bài 3 trang 49 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Bài 3 trang 49 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:

a) y = (x2 – x)×2x;

b) y = x2log3x;

c) y = e3x + 1.

Lời giải:

a) y' = [(x2 – x)×2x]' = (x2 – x)'×2x + (x2 – x)×(2x)'

= (2x – 1)×2x + (x2 – x)×2x×ln2

= 2x(x2ln2 + 2x – 1 – xln2).

b) y' = (x2log3x)' = (x2)'log3x + x2(log3x)'

= 2xlog3x + x2xln3= 2xlog3x+xln3.

c) y' = (e3x + 1)' = e3x + 1×(3x + 1)' = 3e3x + 1.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Bài 4 trang 49 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Bài 4 trang 49 Toán 11 Tập 2: Tính đạo hàm cấp hai của các hàm số sau:

a) y = 2x4 – 5x2 + 3;

b) y = xex.

Lời giải:

a) y' = (2x4 – 5x2 + 3)' = 8x3 – 10x.

y" = (8x3 – 10x)' = 24x2 – 10.

Vậy y" = 24x2 – 10.

b) y' = (xex)' = x'ex + x×(ex)' = ex + xex.

y" = (ex + xex)' = ex + ex + xex = 2ex + xex.

Vậy y" = 2ex + xex.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Bài 5 trang 49 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Bài 5 trang 49 Toán 11 Tập 2: Cân nặng trung bình của một bé gái trong độ tuổi từ 0 đến 36 tháng có thể được tính gần đúng bởi hàm số w(t) = 0,000758t3 – 0,0596t2 + 1,82t + 8,15, trong đó t được tính bằng tháng và w được tính bằng pound (nguồn: https://www.cdc.gov/growthcharts/data/who/GrChrt_Boys). Tính tốc độ thay đổi cân nặng của bé gái đó tại thời điểm 10 tháng tuổi.

Lời giải:

Tốc độ thay đổi cân nặng của bé gái đó tại thời điểm t là:

w'(t) = (0,000758t3 – 0,0596t2 + 1,82t + 8,15)' = 0,002274t2 – 0,1192t + 1,82.

Tốc độ thay đổi cân nặng của bé gái đó tại thời điểm 10 tháng tuổi là:

w'(10) = 0,002274×(10)2 – 0,1192×10 + 1,82. = 0,8554 (pound/tháng).

Vậy tốc độ thay đổi cân nặng của bé gái đó tại thời điểm 10 tháng tuổi là 0,8554 pound/tháng.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Bài 6 trang 49 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Bài 6 trang 49 Toán 11 Tập 2: Một công ty xác định rằng tổng chi phí của họ, tính theo nghìn đô-la, để sản xuất x mặt hàng là C(x)=5x2+60 và công ty lên kế hoạch nâng sản lượng trong t tháng kể từ nay theo hàm số x(t) = 20t + 40. Chi phí sẽ tăng nhanh thế nào sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó?

Lời giải:

Ta có C'(x)=5x2+60'=5x2+60'25x2+60=10x25x2+60=5x5x2+60.

Có x'(t) = (20t + 40)' = 20; x(4) = 120.

Khi đó, tốc độ tăng chi phí của công ty sau t tháng là: C'(x(t)) = C'(x)×x'(t).

Tốc độ tăng chi phí của công ty sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó là:

C'(x(4)) = C'(120)×x'(4) =512051202+602044,7 (nghìn đô-la/tháng).

Tốc độ tăng chi phí của công ty sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó khoảng 44,7 nghìn đô/tháng.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Bài 7 trang 49 Toán 11 Tập 2 Chân trời sáng tạo

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Bài 7 trang 49 Toán 11 Tập 2: Trên Mặt Trăng, quãng đường rơi tự do của một vật được cho bởi công thức s(t) = 0,81t2, trong đó t là thời gian được tính bằng giây và s tính bằng mét. Một vật được thả rơi từ độ cao 200 m phía trên Mặt Trăng. Tại thời điểm t = 2 sau khi thả vật đó, tính:

a) Quãng đường vật đã rơi;

b) Gia tốc của vật.

Lời giải:

a) Quãng đường vật đã rơi tại thời điểm t = 2 là: s(2) = 0,81×22 = 3,24 (m).

Vậy sau 2 giây vật đã rơi được 3,24 m.

b) Có v(t) = s'(t) = (0,81t2)' = 1,62t.

a(t) = v'(t) = (1,62t)' = 1,62.

Vậy gia tốc của vật tại thời điểm t = 2 là 1,62 m/s2.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

SBT Toán 11 Chân trời sáng tạo Bài 2: Các quy tắc tính đạo hàm

Với giải sách bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 2.

Giải SBT Toán 11 Chân trời sáng tạo Bài 2: Các quy tắc tính đạo hàm