Giải Toán 11 | No tags
Mở đầu trang 42 Toán 11 Tập 1: Năm 2020, số dân của một thành phố trực thuộc tỉnh là khoảng 500 nghìn người. Người ta ước tính rằng số dân của thành phố đó sẽ tăng trưởng với tốc độ khoảng 2% mỗi năm. Khi đó số dân Pn (nghìn người) của thành phố đó sau n năm, kể từ năm 2020, được tính bằng công thức Pn = 500(1 + 0,02)n. Hỏi nếu tăng trưởng theo quy luật như vậy thì vào năm 2030, số dân của thành phố đó là khoảng bao nhiêu nghìn người?
Lời giải:
Sau bài học này ta sẽ giải quyết được bài toán trên như sau:
Ta có: n = 2030 – 2020 = 10.
Vậy số dân của thành phố đó vào năm 2030 sẽ là
P10 = 500 . (1 + 0,02)10 ≈ 609 (nghìn người).
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
HĐ1 trang 42 Toán 11 Tập 1: Viết năm số chính phương đầu theo thứ tự tăng dần. Từ đó, dự đoán công thức tính số chính phương thứ n.
Lời giải:
Năm số chính phương đầu theo thứ tự tăng dần là: 0; 1; 4; 9; 16.
Số chính phương thứ nhất là u1 = 02 = 0
Số chính phương thứ hai là u2 = 12 = 1
Số chính phương thứ ba là u3 = 22 = 4
Số chính phương thứ tư là u4 = 32 = 9
Số chính phương thứ năm là u5 = 42 = 16
Tiếp tục như trên, ta dự đoán được công thức tính số chính phương thứ n là un = (n – 1)2 với n ∈ ℕ*.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
HĐ2 trang 43 Toán 11 Tập 1:
a) Liệt kê tất cả các số chính phương nhỏ hơn 50 và sắp xếp chúng theo thứ tự từ bé đến lớn.
b) Viết công thức số hạng un của các số tìm được ở câu a) và nêu rõ điều kiện của n.
Lời giải:
a) Các số chính phương nhỏ hơn 50 được sắp xếp theo thứ tự từ bé đến lớn là
0; 1; 4; 9; 16; 25; 36; 49.
b) Ta có: un = (n – 1)2 với n ∈ ℕ* và n ≤ 8.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Luyện tập 1 trang 43 Toán 11 Tập 1:
a) Xét dãy số gồm tất cả các số tự nhiên chia cho 5 dư 1 theo thứ tự tăng dần. Xác định số hạng tổng quát của dãy số.
b) Viết dãy số hữu hạn gồm năm số hạng đầu của dãy số trong câu a. Xác định số hạng đầu và số hạng cuối của dãy số hữu hạn này.
Lời giải:
a) Xét số tự nhiên a khác 0, ta có a chia cho 5 dư 1, khi đó tồn tại số tự nhiên q khác 0 để a = 5q + 1.
Xét dãy số gồm tất cả các số tự nhiên chia cho 5 dư 1 theo thứ tự tăng dần. Khi đó, số hạng tổng quát của dãy số là un = 5n + 1 (n ∈ ℕ*).
b) Dãy gồm năm số hạng đầu của dãy số trong câu a là: 6; 11; 16; 21; 26.
Số hạng đầu của dãy là u1 = 6, số hạng cuối của dãy là u5 = 26.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
HĐ3 trang 43 Toán 11 Tập 1: Xét dãy số (un) gồm tất cả các số nguyên dương chia hết cho 5: 5, 10, 15, 20, 25, 30, ...
a) Viết công thức số hạng tổng quát un của dãy số.
b) Xác định số hạng đầu và viết công thức tính số hạng thứ n theo số hạng thứ n – 1 của dãy số. Công thức thu được gọi là hệ thức truy hồi.
Lời giải:
a) Số hạng tổng quát của dãy số là un = 5n (n ∈ ℕ*).
b) Số hạng đầu của dãy số là u1 = 5.
Công thức tính số hạng thứ n theo số hạng thứ n – 1 là un = un – 1 + 5 (n ∈ ℕ*, n > 1).
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Luyện tập 2 trang 44 Toán 11 Tập 1:
a) Viết năm số hạng đầu của dãy số (un) với số hạng tổng quát un = n!.
b) Viết năm số hạng đầu của dãy số Fibonacci (Fn) cho bởi hệ thức truy hồi
.
Lời giải:
a) Năm số hạng đầu của dãy số (un) với số hạng tổng quát un = n! là
u1 = 1! = 1;
u2 = 2! = 2;
u3 = 3! = 6;
u4 = 4! = 24;
u5 = 5! = 120.
b) Năm số hạng đầu của dãy số Fibonacci (Fn) là
F1 = 1;
F2 = 1;
F3 = F2 + F1 = 1 + 1 = 2;
F4 = F3 + F2 = 2 + 1 = 3;
F5 = F4 + F3 = 3 + 2 = 5.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
HĐ4 trang 45 Toán 11 Tập 1:
a) Xét dãy số (un) với un = 3n – 1. Tính un + 1 và so sánh với un.
b) Xét dãy số (vn) với . Tính vn + 1 và so sánh với vn.
Lời giải:
a) Ta có: un + 1 = 3(n + 1) – 1 = 3n + 3 – 1 = 3n + 2
Xét hiệu un + 1 – un ta có: un + 1 – un = (3n + 2) – (3n – 1) = 3 > 0, tức là un + 1 > un ∀ n ∈ ℕ*.
Vậy un + 1 > un ∀ n ∈ ℕ*.
b) Ta có: .
Xét hiệu vn + 1 – vn ta có:
vn + 1 – vn = .
Tức là vn + 1 < vn , ∀ n ∈ ℕ*.
Vậy vn + 1 < vn ∀ n ∈ ℕ*.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Luyện tập 3 trang 45 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (un), với .
Lời giải:
Ta có: , .
Tức là un + 1 < un , ∀ n ∈ ℕ*.
Vậy (un) là dãy số giảm.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
HĐ5 trang 45 Toán 11 Tập 1: Cho dãy số (un) với .
a) So sánh un và 1.
b) So sánh un và 2.
Lời giải:
a) Ta có: .
b) Ta có: , suy ra .
Do đó, .
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Luyện tập 4 trang 46 Toán 11 Tập 1: Xét tính bị chặn của dãy số (un), với un = 2n – 1.
Lời giải:
Ta có: un = 2n – 1 ≥ 1, ∀ n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = 2n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Vận dụng trang 46 Toán 11 Tập 1: Anh Thanh vừa được tuyển dụng vào một công ty công nghệ, được cam kết lương năm đầu sẽ là 200 triệu đồng và lương mỗi năm tiếp theo sẽ được tăng thêm 25 triệu đồng. Gọi sn (triệu đồng) là lương vào năm thứ n mà anh Thanh làm việc cho công ty đó. Khi đó ta có:
s1 = 200, sn = sn – 1 + 25 với n ≥ 2.
a) Tính lương của anh Thanh vào năm thứ 5 làm việc cho công ty.
b) Chứng minh (sn) là dãy số tăng. Giải thích ý nghĩa thực tế của kết quả này.
Lời giải:
a) Ta có: s2 = s1 + 25 = 200 + 25 = 225
s3 = s2 + 25 = 225 + 25 = 250
s4 = s3 + 25 = 250 + 25 = 275
s5 = s4 + 25 = 275 + 25 = 300
Vậy lương của anh Thanh vào năm thứ 5 làm việc cho công ty là 300 triệu đồng.
b) Ta có: sn = sn – 1 + 25 ⇔ sn – sn – 1 = 25 > 0 với mọi n ≥ 2, n ∈ ℕ*.
Tức là sn > sn – 1 với mọi n ≥ 2, n ∈ ℕ*.
Vậy (sn) là dãy số tăng. Điều này có nghĩa là mức lương hàng năm của anh Thanh tăng dần theo thời gian làm việc.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Bài 2.1 trang 46 Toán 11 Tập 1: Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:
a) un = 3n – 2;
b) un = 3 . 2n;
c) .
Lời giải:
a) Ta có: u1 = 3 . 1 – 2 = 1;
u2 = 3 . 2 – 2 = 4;
u3 = 3 . 3 – 2 = 7;
u4 = 3 . 4 – 2 = 10;
u5 = 3 . 5 – 2 = 13;
u100 = 3 . 100 – 2 = 298.
b) Ta có: u1 = 3 . 21 = 6;
u2 = 3 . 22 = 12;
u3 = 3 . 23 = 24;
u4 = 3 . 24 = 48;
u5 = 3 . 25 = 96;
u100 = 3 . 2100.
c) Ta có: ;
;
;
;
;
.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Bài 2.2 trang 46 Toán 11 Tập 1: Dãy số (un) được cho bởi hệ thức truy hồi: u1 = 1, un = n . un – 1 với n ≥ 2.
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức số hạng tổng quát của un.
Lời giải:
a) Năm số hạng đầu của dãy số là
u1 = 1;
u2 = 2u1 = 2 . 1 = 2;
u3 = 3u2 = 3 . 2 = 6;
u4 = 4u3 = 4 . 6 = 24;
u5 = 5u4 = 5 . 24 = 120.
b) Nhận xét thấy u1 = 1 = 1!;
u2 = 2 . 1 = 2!;
u3 = 3u2 = 3 . 2 . 1 = 3!;
u4 = 4u3 = 4 . 3 . 2 . 1 = 4!;
u5 = 5u4 = 5 . 4 . 3 . 2 . 1 = 5!;
...
Cứ tiếp tục làm như thế, ta dự đoán được công thức số hạng tổng quát của un là un = n!.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Bài 2.3 trang 46 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (un), biết:
a) un = 2n – 1;
b) un = – 3n + 2;
c) .
Lời giải:
a) Ta có: un + 1 = 2(n + 1) – 1 = 2n + 2 – 1 = 2n + 1
Xét hiệu un + 1 – un = (2n + 1) – (2n – 1) = 2 > 0, tức là un + 1 > un , ∀ n ∈ ℕ*.
Vậy (un) là dãy số tăng.
b) Ta có: un + 1 = – 3(n + 1) + 2 = – 3n – 3 + 2 = – 3n – 1
Xét hiệu un + 1 – un = (– 3n – 1) – (– 3n + 2) = – 3 < 0, tức là un + 1 < un, ∀ n ∈ ℕ*.
Vậy (un) là dãy số giảm.
c)
Nhận xét thấy: ; ;
; ; ...
Vậy dãy số (un) không tăng, cũng không giảm.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Bài 2.4 trang 46 Toán 11 Tập 1: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) un = n – 1;
b) ;
c) un = sin n;
d) un = (– 1)n – 1 n2.
Lời giải:
a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
b) Ta có: , với mọi n ∈ ℕ*.
Vì , ∀ n ∈ ℕ* nên ∀ n ∈ ℕ*.
Suy ra hay ∀ n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.
Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
d) un = (– 1)n – 1 n2
Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.
(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.
n2 ≥ 0 với mọi n ∈ ℕ*.
Do đó, un = – n2 < 0, với mọi n ∈ ℕ* và n chẵn.
un = n2 > 0, với mọi n ∈ ℕ* và n lẻ.
Vậy dãy số (un) không bị chặn.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Bài 2.5 trang 46 Toán 11 Tập 1: Viết số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó:
a) Đều chia hết cho 3;
b) Khi chia cho 4 dư 1.
Lời giải:
a) Các số nguyên dương chia hết cho 3 là: 3; 6; 9; 12; ...
Các số này có dạng 3n với n với n ∈ ℕ*.
Vậy số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó đều chia hết cho 3 là un = 3n với n ∈ ℕ*.
b) Các số nguyên dương chia cho 4 dư 1 có dạng là 4(n – 1) + 1 = 4n – 3 với n ∈ ℕ*.
Vậy số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó khi chia cho 4 dư 1 là un = 4n – 3 với n ∈ ℕ*.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Bài 2.6 trang 46 Toán 11 Tập 1: Ông An gửi tiết kiệm 100 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức tính lãi kép. Số tiền (triệu đồng) của ông An thu được sau n tháng được cho bởi công thức
.
a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.
b) Tìm số tiền ông An nhận được sau 1 năm.
Lời giải:
a) Số tiền ông An nhận được sau tháng thứ nhất là
(triệu đồng).
Số tiền ông An nhận được sau tháng thứ hai là
(triệu đồng).
b) Số tiền ông An nhận được sau 1 năm (12 tháng) là
(triệu đồng).
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Bài 2.7 trang 47 Toán 11 Tập 1: Chị Hương vay trả góp một khoản tiền 100 triệu đồng và đồng ý trả dần 2 triệu đồng mỗi tháng với lãi suất 0,8% số tiền còn lại của mỗi tháng.
Gọi An (n ∈ ℕ) là số tiền còn nợ (triệu đồng) của chị Hương sau n tháng.
a) Tìm lần lượt A0, A1, A2, A3, A4, A5, A6 để tính số tiền còn nợ của chị Hương sau 6 tháng.
b) Dự đoán hệ thức truy hồi đối với dãy số (An).
Lời giải:
a) Ta có: A0 = 100 (triệu đồng)
+) Tiền lãi chị Hương phải trả sau 1 tháng là 100 . 0,8% = 0,8 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 1 tháng là 2 – 0,8 = 1,2 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 1 tháng là
A1 = 100 – 1,2 = 98,8 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 2 tháng là 98,8 . 0,8% = 0,7904 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 2 tháng là 2 – 0,7904 = 1,2096 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 2 tháng là
A2 = 98,8 – 1,2096 = 97,5904 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 3 tháng là 97,5904 . 0,8% = 0,7807232 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 3 tháng là 2 – 0,7807232 = 1,2192768 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 3 tháng là
A3 = 97,5904 – 1,2192768 = 96,3711232 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 4 tháng là 96,3711232 . 0,8% ≈ 0,77097 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 4 tháng là 2 – 0,77097 = 1,22903 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 4 tháng là
A4 = 96,3711232 – 1,22903 = 95,1420932 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 5 tháng là 95,1420932 . 0,8% ≈ 0,76114 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 5 tháng là 2 – 0,76114 = 1,23886 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 5 tháng là
A5 = 95,1420932 – 1,23886 = 93,9032332 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 6 tháng là 93,9032332 . 0,8% ≈ 0,75123 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 6 tháng là 2 – 0,75123 = 1,24877 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 6 tháng là
A6 = 93,9032332 – 1,24877 = 92,6544632 (triệu đồng).
b) Dự đoán hệ thức truy hồi đối với dãy số (An) là
A0 = 100; An = An – 1 – (2 – An – 1. 0,8%) = 1,008An – 1 – 2.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
Với tóm tắt lý thuyết Toán 11 Bài 5: Dãy số sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 11.
1. Định nghĩa dãy số
1.1. Dãy số vô hạn
Mỗi hàm số u xác định trên tập các số nguyên dương ℕ* được gọi là một dãy số vô hạn (gọi tắt là dãy số), kí hiệu là u = u(n).
Ta thường viết un thay cho u(n) và kí hiệu dãy số u = u(n) bởi (un), do đó dãy số (un) được viết dưới dạng khai triển u1, u2, u3,…., un,…
Số u1 gọi là số hạng đầu, un là số hạng thứ n và gọi là số hạng tổng quát của dãy số.
Chú ý: Nếu ∀n ∈ ℕ*, un = c thì (un) được gọi là dãy số không đổi.
Ví dụ: Xác định số hạng đầu và số hạng tổng quát của dãy số sau:
a) Dãy số (un) các số tự nhiên chẵn: 2, 4, 6, 8…
b) Dãy số (vn) các số nguyên dương chia hết cho 3: 3, 6, 9, 12, …
c) Dãy số (qn) các số chính phương: 1, 4, 9, 16, ….
Hướng dẫn giải
a) Dãy số (un) có số hạng đầu u1 = 2 và số hạng tổng quát un = 2n.
b) Dãy số (vn) có số hạng đầu v1 = 3 và số hạng tổng quát vn = 3n.
c) Dãy số (qn) có số hạng đầu q1 = 1 và số hạng tổng quát qn = n2.
1.2. Dãy số hữu hạn
Mỗi hàm số u xác định trên tập M = {1; 2; 3; ...; m} với m ∈ ℕ*, được gọi là một dãy số hữu hạn.
Dạng khai triển của dãy số hữu hạn là u1, u2, u3,…., um.
Số u1 gọi là số hạng đầu, số um gọi là số hạng cuối.
Ví dụ: Xét dãy số hữu hạn gồm các số tự nhiên chẵn nhỏ hơn 20, sắp xếp theo thứ tự từ bé đến lớn.
a) Liệt kê tất cả các số hạng của dãy số hữu hạn này.
b) Tìm số hạng đầu và số hạng cuối của dãy số đó.
Hướng dẫn giải:
a) Các số hạng của dãy số là: 2, 4, 6, 8, 10, 12, 14, 16, 18.
b) Số hạng đầu của dãy số này là 2 và số hạng cuối của dãy số là 18.
2. Các cách cho một dãy số
• Một dãy số có thể cho bằng:
- Liệt kê các số hạng (chỉ dùng cho các dãy hữu hạn và có ít số hạng);
- Công thức của số hạng tổng quát;
- Phương pháp mô tả;
- Phương pháp truy hồi.
Ví dụ: Tìm năm số hạng đầu và số hạng thứ 100 của dãy số sau:
a) un = 2n + 1.
b) un = .
Hướng dẫn giải
a) Năm số hạng đầu của dãy số là: 3, 5, 7, 9, 11.
Số hạng thứ 100 của dãy số là u100 = 2 . 100 + 1 = 201.
b) Năm số hạng đầu của dãy số là: .
Số hạng thứ 100 của dãy số là u100==.
Ví dụ: Xét dãy số gồm tất cả các số nguyên tố theo thứ tự tăng dần. Viết năm số hạng đầu của dãy số đó.
Hướng dẫn giải
Năm số hạng đầu của dãy số là: 2, 3, 5, 7, 11.
Chú ý: Dãy số gồm tất cả các số nguyên tố ở Ví dụ trên được cho bởi phương pháp mô tả (số hạng thứ n là số nguyên tố thứ n). Cho đến nay người ta vẫn chưa biết có hay không một công thức tính số nguyên tố thứ n theo n (với n bất kì), hoặc là một hệ thức tính số nguyên tố thứ n theo một vài số nguyên tố đứng trước nó.
• Hệ thức truy hồi là hệ thức biểu thị số hạng thứ n của dãy số qua số hạng (hay vài số hạng) đứng trước nó.
Ví dụ: Cho dãy số (un) xác định bằng hệ thức truy hồi:
u1 = 2, un = 6un – 1 + 8 với n ≥ 2.
Viết ba số hạng đầu của dãy số này.
Hướng dẫn giải
Ta có: u1 = 2, u2 = 6u1 + 8 = 6 . 2 + 8 = 20, u3 = 6u2 + 8 = 6 . 20 + 8 = 128.
• Chú ý: Để có hình ảnh trực quan về dãy số, ta thường biểu diễn các số hạng của nó trên trục số. Chẳng hạn, xét dãy số (un) với . Năm số hạng đầu của dãy số này là và được biểu diễn trên trục số như sau:
3. Dãy số tăng, dãy số giảm và dãy số bị chặn
3.1. Dãy số tăng, dãy số giảm
Dãy số (un) được gọi là dãy số tăng nếu ta có un + 1 > un với mọi n ∈ ℕ*.
Dãy số (un) được gọi là dãy số giảm nếu ta có un + 1 < un với mọi n ∈ ℕ*.
Ví dụ: Xét tính tăng, giảm của dãy số (un) = 2n + 2.
Hướng dẫn giải
Ta có:
un + 1 – un = [2(n + 1) + 2] – (2n + 2) = (2n + 4) – 2n – 2 = 2 > 0, tức là un + 1 > un, ∀n ∈ ℕ*.
Vậy (un) là dãy số tăng.
3.2. Dãy số bị chặn
Dãy số (un) được gọi là bị chặn trên nếu tồn tại một số M sao cho un ≤ M với ∀n ∈ ℕ*.
Dãy số (un) được gọi là bị chặn dưới nếu tồn tại một số m sao cho un ≥ m với ∀n ∈ ℕ*.
Dãy số (un) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho m ≤ un ≤ M với ∀n ∈ ℕ*.
Ví dụ: Xét tính bị chặn của dãy số (un) = .
Hướng dẫn giải
Dãy số (un) bị chặn trên, vì ,∀n ∈ ℕ*.
Dãy số (un) bị chặn dưới, vì ,∀n ∈ ℕ*.
Vậy dãy số (un) bị chặn.
Bài 1: Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:
a) un = 4n – 2;
b) un = 3 . 2n + 1.
Hướng dẫn giải
a) Năm số hạng đầu của dãy số là: 2, 6, 10, 14, 18.
Số hạng thứ 100 của dãy số là: u100 = 4.100 – 2 = 398.
b) Năm số hạng đầu của dãy số là: 7, 13, 25, 49, 97.
Số hạng thứ 100 của dãy số là: u100 = 3 . 2100 + 1.
Bài 2: Dãy số (un) cho bởi hệ thức truy hồi: u1 = 1, un = n . un-1 với n ≥ 2.
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức số hạng tổng quát un.
Hướng dẫn giải
a) Năm số hạng đầu của dãy số là: 1, 2, 6, 24, 120.
b) Ta thấy u1 =1!, u2 = 2!, u3 = 3!, u4 = 4!, u5 = 5!.
Vậy công thức số hạng tổng quát là un = n!.
Bài 3: Xét tính tăng, giảm của dãy số (un), biết:
a) un = 3n – 1;
b) un = – 3n + 1.
Hướng dẫn giải
a) Ta có: un+1 – un = [3(n + 1) – 1] – (3n – 1) = (3n + 2) – 3n + 1 = 3 > 0, tức là un+1 > un
Suy ra đây là dãy số tăng.
b) Ta có: un+1 – un = [–3(n + 1) + 1] – (–3n + 1) = (–3n – 2) + 3n – 1 = – 3 < 0, tức là un+1 < un.
Suy ra đây là dãy số giảm.
Bài 4: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) un = 2n – 1;
b) un = ;
c) un = cos n.
Hướng dẫn giải
a) un = 2n – 1 ≥ 1 với ∀n ∈ ℕ*
Vậy dãy số (un) bị chặn dưới.
b) Dãy số (un) bị chặn trên, vì , ∀n ∈ ℕ*.
Dãy số (un) bị chặn dưới, vì , ∀n ∈ ℕ*.
Vậy dãy số (un) bị chặn.
c) Ta có: −1 ≤ cos n ≤ 1 ∀n ∈ ℕ*.
Vậy dãy số (un) bị chặn.
Bài 5: Viết số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó:
a) Đều chia hết cho 2;
b) Khi chia cho 3 dư 1.
Hướng dẫn giải
a) un = 2n (∀n ∈ ℕ*).
b) un = 3n + 1 (∀n ∈ ℕ*).
Bài 6: Ông An gửi tiết kiệm 50 triệu đồng kì hạn 1 tháng với lãi suất 7% một năm theo hình thức tính lãi kép. Số tiền (triệu đồng) của ông An thu được sau n tháng được cho bởi công thức
= 50.
a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.
b) Tìm số tiền ông An nhận được sau 1 năm.
Hướng dẫn giải
a) Số tiền ông An nhận được sau tháng thứ nhất là:
= 50 = 50,2917 (triệu đồng).
Số tiền ông An nhận được sau tháng thứ hai là:
= 50 = 50,585 (triệu đồng).
b) 1 năm = 12 tháng
Số tiền ông An nhận được sau 1 năm là:
= 50 = 53,6145 (triệu đồng).
Các bài học để học tốt Dãy số Toán lớp 11 hay khác:
Với 12 bài tập trắc nghiệm Dãy số Toán lớp 11 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 11.
Nội dung đang được cập nhật ...
Xem thêm bài tập trắc nghiệm Toán lớp 11 Kết nối tri thức có đáp án hay khác: