Toán 9 Cánh diều Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông

Giải Toán 9 | No tags

Mục lục

Với giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông sách Cánh diều hay nhất, chi tiết giúp học sinh lớp 9 dễ dàng làm bài tập Toán 9 Bài 2.

Giải Toán 9 Cánh diều Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông

Video Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cô Thùy Dương (Giáo viên VietJack)

Giải Toán 9 trang 82

Khởi động trang 82 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Khởi động trang 82 Toán 9 Tập 1: Hình 12 mô tả đường lên dốc ở Hình 11, trong đó góc giữa BC và phương nằm giữa BA là ABC^=15°.

Khởi động trang 82 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Cạnh góc vuông AC và cạnh huyền BC (Hình 12) có liên hệ với nhau như thế nào?

Lời giải:

Xét ∆ABC vuông tại A, ta có: sinB=ACBC.

Do đó AC = BC.  sinB = BC . sin 15°.

Vậy liên hệ giữa cạnh góc vuông AC và cạnh huyền BC là: AC = BC . sin 15°.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Hoạt động 1 trang 82 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Hoạt động 1 trang 82 Toán 9 Tập 1: Cho tam giác ABC vuông tại A (Hình 13).

Hoạt động 1 trang 82 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Biểu diễn sin B, cos C theo AC, BC.

b) Viết công thức tính AC theo BC và sin B.

c) Viết công thức tính AC theo BC và cos C.

Lời giải:

a) Xét ∆ABC vuông tại A, ta có: sinB=ACBC và cosB=ABBC.

b) Từ sinB=ACBC (câu a) ta có AC = BC.sin B.

c) Từ cosB=ABBC (câu a) ta có AC = BC.cos B.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Luyện tập 1 trang 83 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Luyện tập 1 trang 83 Toán 9 Tập 1: Tính độ cao AC trong Hình 12 khi BC = 20 m (làm tròn kết quả đến hàng phần mười của mét).

Luyện tập 1 trang 83 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại A, ta có: AC = BC.sinB = 20.sin15° ≈ 5,2 (m).

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Luyện tập 2 trang 83 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Luyện tập 2 trang 83 Toán 9 Tập 1: Cho tam giác nhọn ABC có đường cao CK. Biểu diễn CK theo AC và sinA. Từ đó, chứng minh diện tích của tam giác ABC bằng 12.AB.AC.sinA.

Lời giải:

Luyện tập 2 trang 83 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ACK vuông tại K, ta có: sinA = CKAC do đó CK = AC.sinA.

Khi đó, diện tích của tam giác ABC là

12CK.AB = 12.AC.sinA.AB= 12.AB.AC.sinA.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Hoạt động 2 trang 84 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Hoạt động 2 trang 84 Toán 9 Tập 1: Cho tam giác ABC vuông tại A (Hình 17).

Hoạt động 2 trang 84 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Biểu diễn tan B, cot C theo AB, AC.

b) Viết công thức tính AC theo AB và tan B.

c) Viết công thức tính AC theo AB và cot C.

Lời giải:

a) Xét ∆ABC vuông tại A, ta có: tanB = ACAB và cotC = ACAB.

b) Từ tanB=ACAB (câu a) ta có AC = AB.tan B.

c) Từ cotC=ACAB (câu a) ta có AC = AB.cot C.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Luyện tập 3 trang 84 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Luyện tập 3 trang 84 Toán 9 Tập 1: Tính độ dài cạnh AB trong Hình 17 khi AC = 4 cm và B^=34° (làm tròn kết quả đến hàng phần mười của centimét).

Luyện tập 3 trang 84 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại A, ta có AB = AC.cot B = 4.cot 34° ≈ 5,9 (m).

Vậy AB ≈ 5,9 m.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Luyện tập 4 trang 85 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Luyện tập 4 trang 85 Toán 9 Tập 1: Tìm độ dài cạnh góc vuông AC và số đo các góc nhọn B, C của tam giác vuông ABC, biết cạnh góc vuông AB = 5 cm và cạnh huyền BC = 13 cm.

Lời giải:

Luyện tập 4 trang 85 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại A, ta có:

⦁ BC2 = AB2 + AC2 (theo định lí Pythagore)

Suy ra AC2 = BC2 – AB2 = 132 – 52 = 144.

Do đó AC = 12 (cm) (do AC > 0).

⦁ sinB = ACBC=1213 suy ra B^67°.

B^+C^=90° (tổng hai góc nhọn của tam giác vuông bằng 90°)

Suy ra C^=90°B^90°67°=23°.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Luyện tập 5 trang 85 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Luyện tập 5 trang 85 Toán 9 Tập 1: Tìm số đo góc nhọn C và độ dài cạnh góc vuông AB, cạnh huyền BC của tam giác vuông ABC, biết cạnh góc vuông AC = 7 cm và B^=55°.

Lời giải:

Luyện tập 5 trang 85 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại A, ta có:

B^+C^=90° (tổng hai góc nhọn của tam giác vuông bằng 90°)

Suy ra C^=90°B^=90°55°=35°.

⦁ AB = AC.tanC = 7.tan35° ≈ 4,9 (cm).

⦁ AC = BC.sinB, suy ra BC=ACsinB=7sin55°8,5 (cm).

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Luyện tập 6 trang 86 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Luyện tập 6 trang 86 Toán 9 Tập 1: Cho hình chữ nhật ABCD thoả mãn AC = 6 cm, BAC^=47°. Tính độ dài các đoạn thẳng AB, AD.

Lời giải:

Luyện tập 6 trang 86 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại B, ta có:

⦁ AB = AC.cosBAC^ = 6.cos47o ≈4.1 (cm).

⦁ BC = AC.sinBAC^ = 6.sin47o ≈ 4,4 (cm).

Vì ABCD là hình chữ nhật nên AD = BC ≈ 4,4 cm (tính chất hình chữ nhật).

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Bài 1 trang 86 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Bài 1 trang 86 Toán 9 Tập 1: Tìm x, y trong mỗi hình 23a, 23b, 23c (làm tròn kết quả đến hàng phần mười của centimét).

Bài 1 trang 86 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

a) Từ hình ta có:

⦁ x = 6.cos56° ≈ 3,4 (cm).

⦁ y = 6.sin56° ≈ 5,0 (cm).

b) Từ hình ta có:

⦁ x = 1,5.cot32° ≈ 2,4 (cm).

⦁ 1,5 = y.sin32°, suy ra y=1,5sin32°2,8 (cm).

c) Từ hình ta có:

⦁ 0,8 = x.cos70°, suy ra x=0,8cos70°2,3 (cm).

⦁ y = 0,8.tan70° ≈ 2,2 (cm).

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Bài 2 trang 86 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Bài 2 trang 86 Toán 9 Tập 1: Cho tam giác ABC có đường cao AH = 6 cm, B^=40°, C^=35°. Tính độ dài các đoạn thẳng AB, BH, AC, BC (làm tròn kết quả đến hàng phần mười của centimét).

Lời giải:

Bài 2 trang 86 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABH vuông tại H, ta có:

⦁ sinB = AHAB, suy ra AB = AHsin40o = 6sin40°9,3 (cm).

⦁ BH = AH.cotB = 6.cot40° ≈ 7,2 (cm).

Xét ∆ACH vuông tại H, ta có:

⦁ sinC = AHAC suy ra AC = AHsin35°=6sin35°10,5 (cm).

⦁ CH = AH.cotC = 6.cot35° ≈ 8,6 (cm).

Khi đó, BC = BH + HC ≈ 7,2 + 8,6 = 15,8 (cm).

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Bài 3 trang 86 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Bài 3 trang 86 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có B^=30°. Chứng minh AC = 12BC.

Lời giải:

Bài 3 trang 86 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại A, ta có: AC = BC.sinB = BC.sin30o = 12BC.

Vậy AC = 12BC.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Bài 4 trang 87 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Bài 4 trang 87 Toán 9 Tập 1: Cho tam giác ABC vuông cân tại A. Chứng minh AB = AC = 22BC.

Lời giải:

Bài 4 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Vì ∆ABC vuông cân tại A nên B^=C ^=45° và AB = AC.

Ta có AB = BC.sinC = BC.22 = 22BC.

Mà AB = AC nên AB = AC = 22BC.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Bài 5 trang 87 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Bài 5 trang 87 Toán 9 Tập 1: Trong Hình 24, cho O^=α, AB = m và OAB^=OCA^=ODC^=90°.

Bài 5 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Chứng minh:

a) OA = m.cot α;

b) AC = m.cos α;

c) CD = m.cos2 α.

Lời giải:

a) Xét ∆OAB vuông tại A, ta có: OA = AB.cot O = m.cot α.

b) Xét ∆OAC vuông tại C, ta có:

AC = OA.sinO = m.cotα.sinα = m.cosαsinα.sinα = mcosα.

(Theo kết quả câu b, Bài 7, SGK Toán 9, Tập 1, trang 81 ta có cotα=cosαsinα)

Vậy AC = m.cos α.

c) Xét ∆OAC vuông tại C, ta có:

OC = OA.cosO = m.cotα.cosα = m.cosαsinα.cosα = m.cos2αsinα.

(Theo kết quả câu b, Bài 7, SGK Toán 9, Tập 1, trang 81 ta có cotα=cosαsinα)

Xét ∆OCD vuông tại D, ta có:

CD = OC.sinO = m.cos2αsinα.sinα = mcos2α.

Vậy CD = m.cos2 α.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Bài 6 trang 87 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Bài 6 trang 87 Toán 9 Tập 1: Tính độ dài đường gấp khúc ABCDEGH (làm tròn kết quả đến hàng phần mười của centimét), biết các tam giác OAB, OBC, OCD, ODE, OEG, OGH là các tam giác vuông tại các đỉnh lần lượt là B, C, D, E, G, H; các góc O1, O2, O3, O4, O5, O6 đều bằng 30° và OA = 2 cm (Hình 25).

Bài 6 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆OAB vuông tại B, có O^1=30°, theo Bài 3, SGK Toám 9, Tập 1, trang 86, ta có: AB = 12AO = 12.2 = 1 (cm).

Ta cũng có BO = AO.cosO^1 = 2.cos30o = 2.32 = 3 (cm).

Tương tự, ta cũng có:

⦁ BC = 12BO = 12.3 = 32(cm) và CO = BO.cosO2^ = 3.32 = 32 (cm).

⦁ CD = 12CO = 12.32 = 34 (cm) và DO = CO.cosO3^ = 32.32 = 334(cm).

⦁ DE = 12DO = 12.334 = 338 (cm) và EO = DO.cosO4^ = 334.32 = 98 (cm).

⦁ EG = 12EO = 12.98 = 916 (cm) và GO = EO.cosO5^ = 98.32 = 9316 (cm).

⦁ GH = 12GO = 12.9316 = 9332 (cm).

Vậy độ dài đường gấp khúc ABCDEGH là:

1+32+34+338+916+9332

=3232+16332+2432+12332+1832+9332=74+373324,3 (cm).

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Bài 7 trang 87 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Bài 7 trang 87 Toán 9 Tập 1: Hình 26 minh hoạ một phần con sông có bề rộng AB = 100 m. Một chiếc thuyền đi thẳng từ vị trí B bên này bờ sông đến vị trí C bên kia bờ sông. Tính quãng đường BC (làm tròn kết quả đến hàng phần mười của mét), biết ABC^=35°.

Bài 7 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại A, ta có: cosB=ABBC.

Do đó BC = ABcosB=100cos35°122,1 (m).

Vậy quãng đường BC khoảng 122,1 m.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Bài 8 trang 87 Toán 9 Tập 1 Cánh diều

Giải Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông - Cánh diều

Bài 8 trang 87 Toán 9 Tập 1: Từ vị trí A ở phía trên một tòa nhà có chiều cao AD = 68 m, bác Duy nhìn thấy vị trí C cao nhất của một tháp truyền hình, góc tạo bởi tia AC và tia AH theo phương nằm ngang là CAH^=43°. Bác Duy cũng nhìn thấy chân tháp tại vị trí B mà góc tạo bởi tia AB và tia AH là BAH^=28°, điểm H thuộc đoạn thẳng BC (Hình 27). Tính khoảng cách BD từ chân tháp đến chân tòa nhà và chiều cao BC của tháp truyền hình (làm tròn kết quả đến hàng phần mười của mét).

Bài 8 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Vì AH ⊥ BC và BD ⊥ BC nên AH // BD. Do đó ABD^=BAH^=28° (so le trong).

Khoảng cách BD từ chân tháp đến chân tòa nhà là:

BD = AD.cotABD^ = 68.cot28o ≈ 127,9 (m).

Do tứ giác ADBH có ADB^=AHB^=DBH^=90° nên ADBH là hình chữ nhật.

Suy ra AH = DB ≈ 127, 9 (m) và HB = AD = 68 (m).

Do ∆AHC vuông tại H, ta có CH = AH.tanCAH^ ≈ 127,9.tan43o ≈ 119,3 (m).

Chiều cao BC của tháp truyền hình là:

BC = BH + HC ≈ 68 + 119,3 = 187,3 (m).

Vậy khoảng cách BD từ chân tháp đến chân tòa nhà khoảng 127,9 mét và chiều cao BC của tháp truyền hình khoảng 187,3 mét.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác: