Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung, Ước chung lớn nhất

Giải Toán 6 | No tags

Mục lục

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung, Ước chung lớn nhất

Với giải bài tập Toán lớp 6 Bài 12: Ước chung. Ước chung lớn nhất sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh lớp 6 dễ dàng làm bài tập Toán 6 Bài 12.

Video Giải Toán 6 Bài 12: Ước chung. Ước chung lớn nhất - Cô Ngô Thị Vân (Giáo viên VietJack)

A. Các câu hỏi trong bài

Giải Toán 6 trang 36 Tập 1

Làm thế nào để tìm được số lớn nhất vừa là ước của 504, vừa là ước

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Hoạt động khởi động trang 36 Toán lớp 6 Tập 1: Làm thế nào để tìm được số lớn nhất vừa là ước của 504, vừa là ước của 588?

Lời giải:

+ Trước khi học kiến thức Bài 12 này, ta sẽ giải quyết câu hỏi này bằng cách đi tìm tất cả các ước của 504 và 588, sau đó chọn ra các số giống nhau trong các ước của hai số trên, số lớn nhất trong các số đó là số cần tìm.  

+ Sau bài này ta sẽ biết được cách làm đơn giản hơn như sau: 

Cách làm như sau: 

- Phân tích các số ra thừa số nguyên tố: 

504 = 23.32.7

588 = 22.3.72

- Chọn các thừa số chung và số mũ nhỏ nhất của nó sau đó nhân lại ta được: 22.3.7 = 84

- Vậy số lớn nhất vừa là ước của 504 vừa là ước của 588 là 84.

Ta gọi 84 là ước chung lớn nhất của hai số 504 và 588.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Hoạt động khám phá 1 trang 36 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Hoạt động khám phá 1 trang 36 Toán lớp 6 Tập 1:

a) Một nhóm học sinh gồm 12 bạn nam và 8 bạn nữ đi dã ngoại. Có bao nhiêu cách chia nhóm, mỗi nhóm từ 2 bạn trở lên sao cho số bạn nam ở mỗi nhóm bằng nhau, số bạn nữ ở mỗi nhóm cũng bằng nhau.

b) Viết các tập hợp Ư(18), Ư(30). Liệt kê các phần tử chung của tập hợp này.

Lời giải:

a) 

Để chia nhóm học sinh thành các nhóm khác nhau mà mỗi nhóm có số bạn nam bằng nhau, số bạn nữ bằng nhau thì số nhóm vừa phải là ước của 12, vừa phải là ước của 8.

Ta lấy 12 chia cho các số tự nhiên từ 1 đến 12, ta được Ư(12) = {1; 2; 3; 4; 6; 12}.

Ta lấy 8 chia cho các số tự nhiên từ 1 đến 8, ta được: Ư(8) = {1; 2; 4; 8}.

Vậy 12, 8 có cùng các ước là 1, 2, 4.

Do đó có 3 cách chia nhóm: 

Cách 1: Chia 1 nhóm gồm 12 nam và 8 nữ.

Cách 2: Chia 2 nhóm, mỗi nhóm 6 nam, 4 nữ.

Cách 3: Chia 4 nhóm, mỗi nhóm 3 nam, 2 nữ.

b) Ta lấy 18 chia cho các số tự nhiên từ 1 đến 18 ta thấy 18 chia hết cho các số 1; 2; 3; 6; 9; 18.

Khi đó Ư(18) = {1; 2; 3; 6; 9; 18}.

Ta lấy 30 chia cho các số tự nhiên từ 1 đến 30 ta thấy 30 chia hết cho các số 1; 2; 3; 5; 6; 10; 15; 30.

Do đó Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.

Các phần tử chung của hai tập hợp này là 1; 2; 3; 6.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Thực hành 1 trang 36 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Thực hành 1 trang 36 Toán lớp 6 Tập 1:

Các khẳng định sau đúng hay sai? Vì sao?

a) 6 ∈ ƯC(24, 30); 

b) 6 ∈ ƯC(28, 42); 

c) 6 ∈ ƯC(18, 24, 42); 

Lời giải:

a) Ta có: Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}

Các số 1; 2; 3; 6 vừa là ước của 24, vừa là ước của 30. Ta nói 1; 2; 3; 6 là các ước chung của 24 và 30, ta viết ƯC(24, 30) = {1; 2; 3; 6}

⇒ 6 ∈ ƯC(24, 30).

Vậy 6 ∈ ƯC(24, 30) là khẳng định đúng.

b) Ta có: Ư(28) = {1; 2; 4; 7; 14; 28}

Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}

Các số 1; 2; 7; 14 vừa là ước của 28, vừa là ước của 42. Ta nói 1; 2; 7; 14 là các ước chung của 28 và 42, ta viết ƯC(28, 42) = {1; 2; 7; 14}

⇒ 6 ∉ ƯC(28, 42).

Vậy 6 ∈ ƯC(28, 42) là khẳng định sai.

Ta có: Ư(18) = {1; 2; 3; 6; 9; 18}

Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}

Các số 1; 2; 3; 6 vừa là ước của 18, vừa là ước của 24, vừa là ước của 42. Ta nói 1; 2; 3; 6 là các ước chung của 18, 24 và 42, ta viết ƯC(18, 24, 42) = {1; 2; 3; 6}

⇒ 6 ∈ ƯC(18, 24, 42).

Vậy 6 ∈ ƯC(18, 24, 42) là khẳng định đúng.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Thực hành 2 trang 37 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Thực hành 2 trang 37 Toán lớp 6 Tập 1:

Tìm ước chung của:

a) 36 và 45; 

b) 18, 36 và 45.

Lời giải:

a) Ta có: Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(45) = {1; 3; 5; 9; 15; 45}

Do đó: ƯC(36, 45) = {1; 3; 9}.

b) Ta có: Ư(18) = {1; 2; 3; 6; 9; 18}

Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(45) = {1; 3; 5; 9; 15; 45}

Do đó: ƯC(18, 36, 45) = {1; 3; 9}.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Hoạt động khám phá 2 trang 37 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Hoạt động khám phá 2 trang 37 Toán lớp 6 Tập 1: Một chi đội gồm 18 học sinh nam và 30 học sinh nữ muốn lập thành các đội tham gia hội diễn văn nghệ sao cho tiết mục của các đội khác nhau và mỗi bạn chỉ tham gia một đội, số nam trong các đội bằng nhau và số nữ cũng vậy. Có thể biểu diễn được nhiều nhất bao nhiêu tiết mục văn nghệ?

Lời giải:

Số nam trong các đội bằng nhau và số nữ cũng bằng nhau, nên số đội nam (cũng là số đội nữ) là ước của 18 và 30, tức số đội là ước chung của 18 và 30. 

Ư(18) = {1; 2; 3; 6; 9; 18}

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}

ƯC(18; 30) = {1; 2; 3; 6}

Số đội được chia phải là vừa là ước của 18 vừa là ước của 30 nên số đội phải thuộc vào tập ƯC(18;30)

Hơn nữa số đội được chia phải nhiều nhất nên có thể chia chi đội đó thành 6 đội. 

* Vậy: Có thể biểu diễn được nhiều nhất 6 tiết mục văn nghệ.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Thực hành 3 trang 37 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Thực hành 3 trang 37 Toán lớp 6 Tập 1: Viết ƯC(24, 30) và từ đó chỉ ra ƯCLN(24, 30).

Lời giải:

Ta có: 

Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}

ƯC(24, 30) = {1; 2; 3; 6}

Trong các ước chung của 24 và 30, ta thấy 6 là ước lớn nhất 

Do đó: ƯCLN(24, 30) = 6.

Vậy ƯCLN(24, 30) = 6.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Thực hành 4 trang 38 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Thực hành 4 trang 38 Toán lớp 6 Tập 1: Tìm ƯCLN(24, 60); ƯCLN(14, 33); ƯCLN(90,135, 270).

Lời giải:

+) Phân tích các số 24, 60 ra thừa số nguyên tố: 24 = 23.3; 60 = 22.3.5

Các thừa số nguyên tố chung là 2 và 3 với số mũ nhỏ nhất lần lượt là 2 và 1.

Vậy ƯCLN(24, 60) =  22.3 = 12

+) Phân tích các số 14 và 33 ra thừa số nguyên tố: 14 = 2.7, 33 = 33

Vậy ƯCLN(14, 33) = 1

+) Phân tích: 90 = 2.32.5; 135 = 33.5; 270 = 2.33.5

Các thừa số nguyên tố chung là 3 và 5 với số mũ nhỏ nhất lần lượt là 2 và 1

Vậy ƯCLN(90,135, 270) = 32.5 = 45.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Thực hành 5 trang 38 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Thực hành 5 trang 38 Toán lớp 6 Tập 1:

Rút gọn các phân số sau: Thực hành 5 trang 38 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6.

Lời giải:

Để rút gọn một phân số, ta có thể chia cả tử và mẫu của phân số đó cho ước chung lớn nhất của chúng để được phân số tối giản.

+) Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Ư(108) = {1; 2; 3; 4; 6; 9; 12; 18; 27; 36; 54; 108}

ƯCLN(24; 108)  = 12

Thực hành 5 trang 38 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

+) Ư(80) = {1; 2; 4; 5; 8; 10; 16; 20; 40; 80}

Ư(32) = {1; 2; 4; 8; 16; 32}

ƯCLN(80; 32)  = 16

Thực hành 5 trang 38 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Bài 1 trang 38 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Bài 1 trang 38 Toán lớp 6 Tập 1:

Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai? Với khẳng định sai hãy sửa lại cho đúng.

a) ƯC(12, 24) = {1; 2; 3; 4; 6; 8; 12};

b) ƯC(36, 12, 48) = {1; 2; 3; 4; 6; 12}.

Lời giải:

a) Khẳng định a là sai vì:

Ư(12) = {1; 2; 3; 4; 6; 12}

Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Suy ra ƯC(12, 24) = {1; 2; 3; 4; 6; 12}

Do đó 8 không phải là phần tử của tập ƯC(12, 24).

b) Khẳng định b là đúng vì:

Ta có:

Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(12) = {1; 2; 3; 4; 6; 12}

Ư(48) = {1; 2; 3; 4; 6; 8; 12; 16; 24; 48}

Suy ra ƯC(36, 12, 48) = {1; 2; 3; 4; 6; 12}.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Bài 2 trang 39 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Bài 2 trang 39 Toán lớp 6 Tập 1:

Tìm:

a) ƯCLN(1, 16);          b) ƯCLN(8, 20);

c) ƯCLN(84, 156);      c) ƯCLN(16, 40, 176).

Lời giải:

a) ƯCLN(1, 16) = 1.

b) Phân tích 8 và 30 ra thừa số nguyên tố: 8 = 23; 20 = 22.5.

Các thừa số nguyên tố chung là 2.

Lập tích các thừa số chung vừa chọn được, mỗi thừa số lấy với số mũ nhỏ nhất của nó là: 22.

Vậy ƯCLN(8, 20) = 22 = 4.

c) Phân tích 84 và 156 ra thừa số nguyên tố: 84 = 22.3.7; 156 = 22.3.13.

Các thừa số nguyên tố chung là 2 và 3.

Lập tích các thừa số chung vừa chọn được, mỗi thừa số lấy với số mũ nhỏ nhất của nó là: 22.3.

Vậy ƯCLN(84, 156) = 22.3 = 12.

d) Phân tích 16, 40 và 176 ra thừa số nguyên tố: 16 = 24; 4- = 23.5; 176 = 24.11.

Các thừa số nguyên tố chung là 2.

Lập tích các thừa số chung vừa chọn được, mỗi thừa số lấy với số mũ nhỏ nhất của nó là: 23.

Vậy ƯCLN(16, 40, 176) = 23 = 8.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Bài 3 trang 39 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Bài 3 trang 39 Toán lớp 6 Tập 1:

a) Ta có ƯCLN(18, 30) = 6. Hãy viết tập hợp A các ước của 6. Nêu nhận xét về tập hợp ƯC(18, 30) và tập hợp A.

b) Cho hai số a và b. Để tìm tập hợp ƯC(a, b), ta có thể tìm tập hợp các ước của ƯCLN(a, b). Hãy tìm ƯCLN rồi tìm tập hợp các ước chung của:

i. 24 và 30;     ii. 42 và 98;    iii. 180 và 234.

Lời giải:

a) Các ước của 6 là 1, 2, 3, 6.

Do đó ta có tập hợp A = Ư(6) = {1; 2; 3; 6}.

Ư(18) = {1; 2; 3; 6; 9; 18}.

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.

ƯC(18, 30) = {1; 2; 3; 6}.

 Nhận xét: Ta thấy tập hợp ƯC(18, 30) = {1; 2; 3; 6} nên tập hợp ƯC (18, 30) giống với tập hợp A.

Tổng quát: Cho hai số tự nhiên a và b. Để tìm tập ƯC(a,b) ta sẽ tìm ƯCLN(a, b) = m. Khi đó ƯC(a, b) = Ư(m).

b) 

i.  Phân tích 24 và 30 ra thừa số nguyên tố: 24 = 23.3; 30 = 2.3.5.

Suy ra ƯCLN(24, 30) = 2.3 =6.

Vậy: ƯC(24, 30) = Ư(6) = {1; 2; 3; 6}.

ii. Ta phân tích các số 42 và 98 ra thừa số nguyên tố

42 = 2.3.7; 98 = 2.72

Suy ra ƯCLN(42, 98) = 2.7 = 14.

Vậy: ƯC (42, 98) = Ư(14) = {1; 2; 7; 14}.

iii.Ta phân tích các số 180 và 234 ra thừa số nguyên tố

180 = 22.5.32; 234 = 2.32.13

Suy ra ƯCLN(180, 234) = 2.32 = 18

Vậy: ƯC(180, 234) = Ư(18) = {1; 2; 3; 6; 9; 18}.

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Bài 4 trang 39 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Bài 4 trang 39 Toán lớp 6 Tập 1:

Rút gọn các phân số sau: Bài 4 trang 39 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6 .

Lời giải:

Để rút gọn một phân số, ta chia cả tử và mẫu của phân số cho ƯCLN của chúng để được phân số tối giản.

+) Ta có: 28 = 22.7; 42 = 2.3.7.

Suy ra ƯCLN(28, 42) = 14

Bài 4 trang 39 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

+) Ta có: 60 = 22.3.5; 135 = 33.5.

Suy ra ƯCLN(60, 135) = 15

Bài 4 trang 39 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

+) Ta có: 288 = 25.32; 180 = 22.32.5

ƯCLN(288, 180) = 36

Bài 4 trang 39 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Bài 5 trang 39 Toán 6 Tập 1 Chân trời sáng tạo | Giải Toán lớp 6

Giải Toán lớp 6 Chân trời sáng tạo Bài 12: Ước chung. Ước chung lớn nhất

Bài 5 trang 39 Toán lớp 6 Tập 1: Chị Lan có ba đoạn dây ruy băng màu khác nhau với độ dài lần lượt là 140 cm, 168 cm và 210 cm. Chị muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài để làm nơ trang trí mà không bị thừa ruy băng. Tính độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra (độ dài mỗi đoạn dây ngắn là một số tự nhiên với đơn vị là xăng-ti-mét). Khi đó, chị Lan có được bao nhiêu đoạn dây ruy băng ngắn?

Lời giải:

Bởi vì chị Lan muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài.

Nên độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra chính là ước chung lớn nhất của 140, 168 và 210.

Ta tìm ước chung lớn nhất của 140, 168, 210:

Ta có: 140 = 22.5.7

           168 = 23.3.7

           210 = 2.3.5.7

Suy ra ƯCLN(140, 168, 210) = 2 . 7 = 14.

Độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra là: 14 cm.

- Mỗi đoạn dây khác nhau có thể cắt được số đoạn dây ngắn là:

Đoạn dây dài 140 cm cắt được: 140 : 14 = 10 (đoạn).

Đoạn dây dài 168 cm cắt được: 168 : 14 = 12 (đoạn).

Đoạn dây dài 210 cm cắt được: 210 : 14 = 15 (đoạn).

- Số đoạn dây ruy băng ngắn chị Lan có được là:

10 + 12 + 15 = 37 (đoạn dây).

Kết luận: Chị Lan có được tổng cộng 37 đoạn dây ruy băng ngắn sau khi cắt với độ dài mỗi đoạn là 14 cm. 

Lời giải bài tập Toán 6 Bài 12: Ước chung. Ước chung lớn nhất hay, chi tiết khác:

Giải sách bài tập Toán lớp 6 Bài 12. Ước chung. Ước chung lớn nhất

Giải sách bài tập Toán lớp 6 Bài 12. Ước chung. Ước chung lớn nhất

Với giải sách bài tập Toán lớp 6 Bài 12. Ước chung. Ước chung lớn nhất sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 6.

Giải vở thực hành Toán 6 Chân trời sáng tạo Bài 12: Bội chung. Bội chung nhỏ nhất

Với giải vở thực hành Toán lớp 6 Bài 12: Bội chung. Bội chung nhỏ nhất sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập về nhà trong VTH Toán 6.

Giải vở thực hành Toán 6 Chân trời sáng tạo Bài 12: Bội chung. Bội chung nhỏ nhất

B – Câu hỏi trắc nghiệm

Bội chung. Bội chung nhỏ nhất (Lý thuyết Toán lớp 6) | Chân trời sáng tạo

Với tóm tắt lý thuyết Toán lớp 6 Bài 12: Bội chung, Bội chung nhỏ nhất hay nhất, chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 6.

Bội chung. Bội chung nhỏ nhất (Lý thuyết Toán lớp 6) | Chân trời sáng tạo

Lý thuyết Bội chung. Bội chung nhỏ nhất

1. Bội chung

Một số được gọi là bội chung của hai hay nhiều số nếu nó là bội của tất cả các số đó.

Ví dụ: Ta có: B(9) = {0; 9; 18; 27; 36; 45; 54; 63; 72; …};

B(12) = {0; 12; 24; 36; 48; 60; 72; …}.

Hai tập hợp này có một số phần tử chung như 0; 36; 72; … Ta nói chúng là các bội chung của 9 và 12.

• Kí hiệu tập hợp các bội chung của a và b là BC(a, b).

• Tương tự, tập hợp các bội chung của a, b, c là BC(a, b, c).

Ví dụ:

- Tập hợp các bội chung của 15 và 55 là BC(15, 55).

- Tập hợp các bội chung của 16; 20; 25 là BC(16, 20, 25).

Cách tìm bội chung của hai số a và b:

- Viết tập hợp B(a) và bội B(b).

- Tìm những phần tử chung của B(a) và B(b).

Ví dụ:

Ta có: B(2) = {0; 2; 4; 6; 8; 10; 12; ...}

B(3) = {0; 3; 6; 9; 12; ...}

Những phần tử chung của B(2) và B(3) là 0; 6; 12; ...

Do đó BC(2, 3) = {0; 6; 12; ...}.

2. Bội chung nhỏ nhất

Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó.

Kí hiệu bội chung nhỏ nhất của a và b là BCNN(a, b).

Tương tự, bội chung nhỏ nhất của a, b và c là BCNN(a, b, c).

Nhận xét: Tất cả các bội chung của a và b đều là bội của BCN(a, b). Mọi số tự nhiên đều là bội của 1.

Do đó, với mọi số tự nhiên a và b (khác 0) ta có:

BCNN(a, 1) = a;

BCNN(a, b, 1) = BCNN(a, b).

Ví dụ:

• Ta có: BC(6, 8) = {0; 24; 48; 72; …} vì 24 là số nhỏ nhất khác 0 trong số các bội chung của 6 và 8, nên BCNN(6, 8) = 24.

Tất cả các bội chung của 6 và 8 (là 0; 24; 48; 72; …) đều là bội của BCNN(6, 8) là 24.

• BCNN(8, 1) = 1;

• BCNN(6, 8, 1) = BCNN(6, 8) = 24.

3. Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố

Quy tắc:

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau:

Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.

Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.

Ví dụ: Tìm BCNN của 15 và 20.

Hướng dẫn giải

Ta có: 15 = 3 . 5; 20 = 22 . 5.

Thừa số nguyên tố chung và riêng là 2; 3 và 5.

Số mũ lớn nhất của 2 là 2; của 3 là 1 và của 5 là 1.

Do đó BCNN(15, 20) = 22 . 3 . 5 = 60.

Chú ý:

• Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó.

Ví dụ: 3 và 8; 8 và 11; 11 và 3 là các cặp đôi một nguyên tố cùng nhau.

Khi đó, BCNN(3, 8, 11) = 3 . 8 . 11 = 264.

• Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy.

Ví dụ: Ta có BCNN(6, 12, 36) = 36 vì 36 ⋮ 9; 36 ⋮ 12 và 36 lớn hơn 9 và 12.

4. Ứng dụng trong quy đồng mẫu các phân số

Quy tắc:

Muốn quy đồng mẫu số nhiều phân số ta có thể làm như sau:

Bước 1: Tìm một bội chung của các mẫu số (thường là BCNN) để làm mẫu số chung.

Bước 2: Tìm thừa số phụ của mỗi mẫu số (bằng cách chia mẫu số chung cho từng mẫu số riêng).

Bước 3: Nhân tử số và mẫu số của mỗi phân số với thừa số phụ tương ứng.

Ví dụ: Quy đồng mẫu số hai phân số 7/30 và 5/42.

Hướng dẫn giải

Ta có: 30 = 2 . 3 . 5; 42 = 2 . 3 . 7.

Thừa số nguyên tố chung và riêng là 2; 3; 5 và 7.

Số mũ lớn nhất của 2; 3; 5 và 7 đều là 1.

Khi đó, BCNN(30, 42) = 2 . 3 . 5 . 7 = 210.

Do đó BC(30; 42) = {0; 210; 420; ...}

Cách 1: Chọn mẫu chung là 210. Ta được:

 Bội chung. Bội chung nhỏ nhất (Lý thuyết Toán lớp 6) | Chân trời sáng tạo.

Cách 2: Chọn mẫu chung là một bội chung bất kì khác 0 của 30 và 42.

Chẳng hạn: chọn mẫu chung là 420, ta được:

 Bội chung. Bội chung nhỏ nhất (Lý thuyết Toán lớp 6) | Chân trời sáng tạo.

Bài tập Bội chung. Bội chung nhỏ nhất

Bài 1: Tìm:

a) BC(6, 14);

b) BC(6, 20, 30);

c) BCNN(10, 1, 12).

Hướng dẫn giải

a) Phân tích 6 và 14 ra thừa số nguyên tố, ta được:

6 = 2 . 3; 14 = 2 . 7.

Khi đó, BCNN(6, 14) = 2 . 3 . 7 = 42.

Do đó BC(6, 14) = {0; 42; 84; 126; …}.

Vậy BC(6, 14) = B(42) = {0; 42; 84; 126; …}.

b) Phân tích 6; 20 và 30 ra thừa số nguyên tố, ta được:

6 = 2 . 3; 20 = 22 . 5; 30 = 2 . 3 . 5.

Khi đó, BCNN(6, 20, 30) = 22 . 3 . 5 = 60.

Do đó BC(6, 20, 30) = B(60) = {0; 60; 120; 180; …}.

Vậy BC(6, 20, 30) = {0; 60; 120; 180; …}.

c) Ta có: BCNN(10, 1, 12) = BCNN(10, 12).

Phân tích 10 và 12 ra thừa số nguyên tố, ta được:

10 = 2 . 5; 12 = 22 . 3.

Khi đó BCNN(10, 12) = 22 . 3 . 5 = 60.

Vậy BCNN(10, 1, 12) = BCNN(10, 12) = 60.

Bài 2: Tìm số tự nhiên a nhỏ nhất khác 0, biết rằng a ⋮ 126, a ⋮ 198.

Hướng dẫn giải

Vì a ⋮ 126 và a ⋮ 198 nên a là BC(126, 198).

Vì a là số tự nhiên nhỏ nhất nên a BCNN(126, 198).

Ta có: 126 = 2 . 32 . 7;

198 = 2 . 32 . 11.

Thừa số nguyên tố chung và riêng là 2; 3; 7 và 11.

Số mũ lớn nhất của 2 là 2, của 3 là 2, của là 7 và của 11 là 1.

BCNN(126, 198) = 2 . 32 . 7 . 11 = 1 386.

Vậy a = 1386.

Bài 3: Hai bạn Tùng và Hải thường đến thư viện đọc sách. Tùng cứ 8 ngày đến thư viện 1 lần, Hải 10 ngày 1 lần. Lần đầu cả hai bạn cùng đến thư viện vào một ngày. Hỏi ít nhất bao nhiêu ngày thì hai bạn cùng đến thư viện?

Hướng dẫn giải

Gọi a (ngày) là số ngày ít nhất hai bạn cùng đến thư viện (x, x ≥ 10).

Số ngày ít nhất hai bạn cùng đến thư viện thuộc bội chung nhỏ nhất của 8 và 10.

Khi đó, a  BCNN(8, 10).

Ta có: 8 = 23; 10 = 2 . 5

Do đó BCNN(8, 10) = 23 . 5 = 40 (thỏa mãn điều kiện).

Vậy sau 40 ngày thì hai bạn cùng đến thư viện.

Học tốt Bội chung. Bội chung nhỏ nhất

Các bài học để học tốt Bội chung. Bội chung nhỏ nhất Toán lớp 6 hay khác:

Bài tập trắc nghiệm Bội chung. Bội chung nhỏ nhất có đáp án - Toán lớp 6 Chân trời sáng tạo

Với 25 bài tập trắc nghiệm Toán lớp 6 Bài 12: Bội chung. Bội chung nhỏ nhất có đáp án và lời giải chi tiết đầy đủ các mức độ sách Chân trời sáng tạo sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 6.

Bài tập trắc nghiệm Bội chung. Bội chung nhỏ nhất có đáp án - Toán lớp 6 Chân trời sáng tạo

Dạng 1.Bội chung. Bội chung nhỏ nhất

Câu 1. Số x là bội chung của a; b; c nếu:

A. x⋮a hoặc x⋮b hoặc x⋮c

B. x⋮ax⋮b

C. x⋮bx⋮c

D. x⋮ax⋮bx⋮c

Câu 2. Xác định số nhỏ nhất khác 0 trong các bội chung của 2 và 3.

A. 0

B. 6

C. 2

D. 3

Câu 3. Tìm BCNN(38,76)

A. 2888

B. 37

C. 76

D. 144

Câu 4. Tìm bội chung nhỏ nhất của 9 và 15, biết 9 = 32và 15 = 3. 5.

A. 15

B. 45

C. 90

D. 150

Câu 5. Quy đồng mẫu hai phân số 79415 với mẫu số nhỏ nhất thì được các phân số lần lượt là:

A. 12453545

B. 35451245

C. 70902490

D. 45351235

Câu 6. Mẫu số nhỏ nhất khi quy đồng các phân số 316524

A. 24

B. 48

C. 96

D. 16

Câu 7. Chọn câu trả lời sai.

A. 5∈ ƯC(55;110)

B. 24∈BC(3;4)

C. 10∉ ƯC(55;110)

D. 12⊂BC(3;4)

Câu 8. Choa∈BC(6; 8), vậy số a nhận giá trị nào sau đây:

A. 2

B. 12

C. 24

D. 36

Câu 9. Giao của tập của hai tập hợpA={toán, văn, thể dục, ca nhạc}B={mỹ thuật, toán, văn, giáo dục công dân}

A. C ={toán, văn, thể dục}

B. C ={toán, văn}

C. C ={toán, văn, thể dục, ca nhạc}

D. C ={toán, thể dục, giáo dục công dân}

Câu 10. BCNN(10, 15, 30) là:

A. 10

B. 15

C. 30

D. 60

Dạng 2.các dạng toán về bội chung, bội chung nhỏ nhất

Câu 1. Có bao nhiêu số có ba chữ số là bội chung của a và b, biết rằng

BCNN(a,b) = 300.

A. 1

B. 2

C. 3

D. 300

Câu 2. Tìm bội chung nhỏ nhất của: 7 và 13

A. 182

B. 91

C. 13

D. 1

Câu 3. 54 và 108 có bội chung nhỏ nhất là

A. 54

B. 1

C. 108

D. 216

Câu 4. Thực hiện các phép tính sau: 38+524. Với kết quả là phân số tối giản

A.1428

B.712

C.112192

D.127

Câu 5. Cho tập hợp X là ước của 35 và lớn hơn 5. Cho tập Y là bội của 8 và nhỏ hơn 50. Gọi M là giao của 2tập hợp XY, tập hợp M có bao nhiêu phần tử?

A. 2

B. 1

C. 0

D. 3

Câu 6. Có bao nhiêu số tự nhiên x khác 0 thỏa mãn x∈BC(12;15;20)x≤ 100

A. 4

B. 3

C. 2

D. 1

Câu 7. Tìm số tự nhiên x nhỏ nhấtbiết x⁝45;x⁝110 và x⁝75

A. 1650

B. 3750

C. 4950

D. 3300

Câu 8. Tìm một số tự nhiên biết tích của ước số lớn nhất với bội số nhỏ nhất khác 0 của nó là 256.

A. 16

B. 18

C. 24

D. 32

Câu 9. Một trường tổ chức cho học sinh đi tham quan bằng ôtô. Nếu xếp 35 hay 40 học sinh lên một ô tô thì đều thấy thiếu mất 5 ghế ngồi. Tính số học sinh đi tam quan biết số lượng học sinh đó trong khoảng từ 800 đến 900 em.

A. 845

B. 840

C. 860

D. 900

Câu 10. Chị Hòa có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông thì đều vừa hết. Hỏi chị Hòa có bao nhiêu bông sen? Biết rằng chị Hòa có khoảng từ 200 đến 300 bông.

A. 210

B. 220

C. 230

D. 240

Câu 11. Lịch xuất bến của một số xe buýt tại bến xe Mỹ Đình (Hà Nội) được ghi ở bảng bên. Giả sử các xe buýt xuất bến cùng lúc vào 10 giờ 35 phút. Hỏi vào sau bao lâu thì cả 3 xe xuất bến cùng một lúc lần nữa (kể từ lần đầu tiên)?

Bài tập trắc nghiệm Bội chung. Bội chung nhỏ nhất có đáp án | Toán lớp 6 Chân trời sáng tạo

A. 90 phút

B. 45 phút

C. 180 phút

D. 30 phút

Câu 12. Tìm số tự nhiên n lớn nhất có 3 chữ số sao cho nchia 8dư 7, chia 31dư 28.

A. 927

B. 183

C. 431

D. 729

Câu 13. Cho a; b có BCNN(a; b) = 630; ƯCLN(a; b) = 18. Có bao nhiêu cặp số

a; b thỏa mãn?

A. 6

B. 5

C. 2

D. 3

Câu 14. Tìm hai số tự nhiên a, b(a < b). Biết a + b = 20, BCNN(a, b) = 15.

A. a = 15; b = 25.

B. a = 15; b = 5.

C. a = 15; b = 20.

D. a = 5; b = 15.

Câu 15. Một số tự nhiên aa khi chia cho 74; chia cho 96. Tìm số dư khi chia a cho 63.

A. 0

B. 36

C. 3

D. 60

Xem thêm bài tập trắc nghiệm Toán lớp 6 Chân trời sáng tạo có đáp án hay khác: