Giải Toán 12 Bài 15: Phương trình đường thẳng trong không gian - Kết nối tri thức
HĐ6 trang 46 Toán 12 Tập 2: Trong không gian Oxyz, cho hai đường thẳng ∆1; ∆2 lần lượt đi qua các điểm A1(x1; y1; z1), A2(x2; y2; z2) và tương ứng có vectơ chỉ phương (H.5.29).
a) Tìm điều kiện đối với và để ∆1 và ∆2 song song hoặc trùng nhau.
b) Giả sử và thì ∆1 và ∆2 có cắt nhau hay không?
c) Giả sử thì ∆1 và ∆2 có chéo nhau hay không?
Lời giải:
a) ∆1 // ∆2 .
∆1 ≡ ∆2 .
b) ∆1 và ∆2 cắt nhau khi và chỉ khi và không cùng phương và , và đồng phẳng. Tức là và .
c) ∆1 và ∆2 chéo nhau khi và chỉ khi , và không đồng phẳng. Tức là:
Lời giải bài tập Toán 12 Bài 15: Phương trình đường thẳng trong không gian hay, chi tiết khác: