Giải Toán 12 Bài 1: Phương trình mặt phẳng - Chân trời sáng tạo
Vận dụng 6 trang 42 Toán 12 Tập 2: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng , chiều cao bằng 2a và O là tâm của đáy. Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 18, tính khoảng cách từ điểm C đến mặt phẳng (SAB).
Lời giải:
Vì ABCD là hình vuông cạnh và O là tâm của hình vuông nên ta có:
OA=OB=OC=OD=a.
Khi đó ta có O(0; 0; 0), A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a), C(a; 0; 0).
Mặt phẳng (SAB) đi qua A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a) có phương trình theo đoạn chắn là:
hay −2x + 2y + z = 2a hay −2x + 2y + z – 2a = 0.
Ta có .
Vậy
Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay, chi tiết khác: